Changes for page Available Topics
Last modified by Niklas Rentz on 2025/05/09 08:15
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Objects (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. cds1 +XWiki.nbw - Content
-
... ... @@ -26,34 +26,43 @@ 26 26 27 27 //» Dienste.// Algorithmen und Meta Layout müssen den Anwendern zugänglich gemacht werden, damit ein Nutzen daraus entsteht. Dazu müssen wir verschiedenste graphische Frameworks mit vorhandenen Layout-Bibliotheken integrieren und eine Reihe von Werkzeugen entwickeln, mit denen die Verfügbarkeit unserer Lösungen gesteigert wird. Hierzu gehört z.B. die Unterstützung von Standard-Graphenformaten sowie ein Web-Service für automatisches Layout. 28 28 29 -* **Evaluate Impact of Reversing Edges on Humans** (Master) 29 +* **1 Tight Packing of Connected Components** (Bachelor, Master) 30 +Different connected components of a graph are often laid out separately and combined again afterwards. This combination step often produces too much whitespace. Research relevant 2D packing literature and implement a better solution. 31 +\\ 32 + 33 +* **2 Heuristics for the Compact Layering Problem** (Bachelor, Master) 34 +Usually the layer assignment problem of the layer-based approach seeks to let as many edges as possible point into the same direction. Refraining from doing so sometimes allows more compact drawings, which so far has been evaluated using optimization problems. The task is to find and evaluate appropriate heuristics. 35 +* **2 Evaluate Impact of Reversing Edges on Humans** (Master) 30 30 Reversing edges during the layer assignment problem as suggested by the previous topic may have a negative impact on the readability of diagram. User-studies should be carefully planned and conducted to answer two questions: which edges are naturally reversed by humans and does reversing too many edges worsen comprehensibility? 31 -* **Node Placement With a Focus on Compactness** (Master) 37 +* **2 Layering Algorithms** (Bachelor, Master) 38 +Implement an alternative algorithm for the layer assignment problem used in the layer-based approach to graph layout. The focus of the algorithm could be the consideration of the number of edge crossings, a given aspect ratio, or overall compactness. 39 +* **2 Node Placement With a Focus on Compactness** (Master) 32 32 Node placement algorithms often try to draw as many edges as straight lines as possible. However, that usually results in less compact diagrams. The focus of this topic would be to devise or adapt a node placement algorithm that tries to strike a balance between straightness and compactness. 33 33 34 - \\42 + 35 35 36 -* **Interactive Constraint Creation and Application in Automatic Layout **(Bachelor, Master) 44 +* **2 Interactive Constraint Creation and Application in Automatic Layout **(Bachelor, Master) 37 37 Evaluate options how to create constraints on the layout like "Node x should be placed at position y" and how to implement this in the current layout algorithms. Assess how such constraints can be persisted within the model. 38 -* **Force Based Drawing with Port Constraints** (Master) 46 +* **3 Force Based Drawing with Port Constraints** (Master) 39 39 Develop methods for integrating port constraints in force-based drawing approaches. The resulting node placement shall be evaluated using an edge router such as [[libavoid>>url:http://www.adaptagrams.org/||shape="rect"]] on the model library of [[Ptolemy>>url:http://ptolemy.eecs.berkeley.edu/||shape="rect"]]. 48 +* **3 Combining Forces and Layers** (Master)** 49 +**Design and implement a layout algorithm that combines the force-based and the layer-based approaches. The first three phases of the layer-based approach shall be replaced by a node distribution computed with a force-based approach. 40 40 41 - \\51 + 42 42 43 -* **Improved Spline Edge Routing **(Master) 53 +* **1 A (Simple) Edge Router** (Bachelor, Master) 54 +Often, people want their nodes to stay in the same place, but have the edges routed somehow. We currently don't have any layout algorithm that can do so. In this assignment, you would implement a simple edge router to solve this. 55 +* **1 Improved Spline Edge Routing **(Master) 44 44 Our layer-based layout algorithm is capable to route edges as splines. Evaluate the results using state machine diagrams, identify possible improvements and develop solutions to address these. 45 -* **Orthogonal "Edge Bundling"** (Bachelor, Master) 57 +* **1 Improve and Assess KLay Layered's JUnit Test Environment **(Bachelor, Master) 58 +We maintain a variety of JUnit tests to assure our layout algorithm works properly. The environment to execute these tests grew over time and requires a face-lift. The task is to evaluate existing testing frameworks of other projects, find a clean and efficient way to specify and maintain our tests, and update the current implementation. 59 +* **3 Orthogonal "Edge Bundling"** (Bachelor, Master) 46 46 Implement and evaluate strategies for orthogonal edge bundling within our layer-based layout algorithm. 47 47 \\ 48 -* **Force-directed Methods for State Machine Layout** (Master) 49 -We currently use layer-based methods to layout SCCharts, a state machine dialect. The goal of this topic is to evaluate and implement force-directed methods to lay out SCCharts. Hard requirements are a proper placement of edge labels, proper routing of edges, and being able to specify the relative positioning of certain nodes to each other. 50 -* **Routing of Self-Loops** (Master) 51 -Self-loops are an integral part of many diagram types, for instance, of state diagrams and dataflow diagrams. Properly routing self-loops is not as easy as one may think. The task of this topic is to evaluate and implement different strategies to route self-loops for three edge routing styles: polyline, orthogonal, and splines. Labels of self loops are to be considered as well. 52 -\\ 53 53 54 54 = Modeling Pragmatics = 55 55 56 -**Advisors:** Reinhard von Hanxleden, Ulf Rüegg, Christoph Daniel Schulze 65 +**Advisors:** Reinhard von Hanxleden, Ulf Rüegg, Christoph Daniel Schulze, Insa Fuhrmann 57 57 58 58 * **1 Compound Graph Exploration** (Bachelor, Master) 59 59 A new graph exploration approach should be examined which is uses different zoom levels for different compound nodes. This tries to map the "Google Maps approach" of only showing the information of interest at any given zoom level to the field of graph exploration. ... ... @@ -61,14 +61,10 @@ 61 61 Implement a prototype to investigate whether OpenStreetMap can be used to display custom data (such as, say, rendered diagrams) to use its filtering and exploration features for exploring large diagrams. 62 62 * **3 Control Flow Graph Exploration / Visualization** (Bachelor) 63 63 Use pragmatics concepts (automatic layout, focus & context) for exploring/visualizing control flow graphs and specific paths, eg. as computed by OTAWA WCET analysis tool, eg. using KLighD. 64 -* **Generate signal flow graphs from finished module descriptions (Bachelor)** 65 -Use pragmatics concepts to parse YAML data and generate browsable signal flow diagrams for an audio application using KLighD. Might also include building an Xtext-based editor to write the YAML files in the first place and help highlight problems. (In conjunction with [[sonoware GmbH>>url:https://www.sonoware.de/en/||shape="rect"]]) 66 -* **Use signal flow graphs for parameterizing / debugging audio system configurations (Master)** 67 -The configuration of how signals are routed and how signal processors are configured in an audio system is a complex task. Make configuration and debugging easier by providing a visualization of the current configuration. Also, research what will help developers and users find configuration problems. The resulting software can be integrated into an existing Python-based configuration application, or be developed as a standalone tool that communicates with the audio system through Ethernet. (In conjunction with [[sonoware GmbH>>url:https://www.sonoware.de/en/||shape="rect"]]) 68 68 69 69 = Semantics, Synchronous Languages and Model-based Design = 70 70 71 -**Advisors:** Alexander Schulz-Rosengarten, Reinhard v. Hanxleden76 +**Advisors:** Christian Motika, Steven Smyth, Reinhard v. Hanxleden, Insa Fuhrmann 72 72 73 73 Heute haben sich eine ganze Reihe von Modellierungssprachen durchgesetzt, die grafische Modelle verwenden. Dazu zählen beispielsweise die [[Unified Modeling Language (UML) >>url:http://de.wikipedia.org/wiki/UML||shape="rect" class="external-link"]]oder die Werkzeugketten [[Simulink/Stateflow von Mathworks >>url:http://de.wikipedia.org/wiki/Simulink||shape="rect" class="external-link"]]und [[SCADE von Esterel-Technologies>>url:http://en.wikipedia.org/wiki/SCADE||shape="rect" class="external-link"]]. Letztere werden insbesondere auch im Entwurf eingebetteter und sicherheitskritischer Systeme (z.B. in Fahr- und Flugzeugen) eingesetzt. 74 74 ... ... @@ -81,36 +81,34 @@ 81 81 82 82 In diesem Kontext sind Themenstellungen für Bachelor-/Master-/Diplom- und Studienarbeiten beispielhaft genannt. Bei Fragen oder sprechen Sie einen Betreuer bitte direkt an: 83 83 84 - \\89 + 85 85 86 -// SCCharts Modelling &Transformations//91 +//Timing// 87 87 93 +* (% style="line-height: 1.4285715;" %)**On the Pragmatics of Interactive Timing Information Feedback for Graphical Modeling **(%%)(Bachelor)(% style="line-height: 1.4285715;" %)** 94 +**(%%)Use Pragmatics concepts to enhance the timing information feedback of the Interactive Timing Analysis. 95 + 96 +//SCCharts Modelling & Compilation// 97 + 98 +* (% style="line-height: 1.4285715;" %)**Optimization of the SCCharts compiler/transformations **(%%)(Bachelor/Master) 99 +Profile the actual SCCharts compiler/transformations and apply optimizations; also evaluate the possibility to use multiple cores for compilation 88 88 * (% style="line-height: 1.4285715;" %)**On the pragmatics of modeling large models in SCCharts**(%%) (Bachelor/Master) 89 89 Evaluate the possibilities to create and maintain large models in model-based languages (i.e. SCCharts) and provide suggestions for improvements 102 +* **Extend the SC MoC to handle priority-based variable accesses** (Bachelor/Master) 103 +Add priorities to variable accesses to extend the SC MoC and therefore the number of valid sequentially constructive synchronous programs. 90 90 * **Transformation of Circuits to SCCharts** (Bachelor/Master) 91 91 Implement a transformation that translates circuits to (dataflow) SCCharts. 106 +* **Efficient data dependency & scheduling analyses in SCCharts** (Master/Bachelor) 107 +Implement analyses for data dependency, scheduling (e.g. tick boundaries) for SCCharts to improve static scheduling of the compiler 108 +* **Curing Schizophrenia in SCCharts **(Master/Bachelor) 109 +Develop new synchronizer to handle schizophrenia properly (e.g. depth join). 92 92 * **SCCharts Verification** (Master/Bachelor) 93 93 Add the possibility to perfom model checking on SCCharts 94 -* **Transformation Verification** (Master/Bachelor) 95 -Develop a method for SCCharts to check transformations for semantic equivalence. 96 96 * **Derive M2M Transformations from Pseudocode** (Master/Bachelor) 97 97 Create a Pseudocode DSL (and generator) to automatically derive M2M transformations. 98 98 * **Raceyard evaluation** (Master) 99 99 Evaluate the possibility for the use of SCCharts in the Raceyard context and pave the way for future experiments 100 100 101 -//SCCharts Code Generation & Optimizations// 102 - 103 -* **Optimization of the SCCharts compiler/transformations **(Bachelor/Master) 104 -Profile the actual SCCharts compiler/transformations and apply optimizations; also evaluate the possibility to use multiple cores for compilation. 105 -* **SCG Optimization based on SSA **(Bachelor/Master) 106 -The Static Single Assignment form enables powerful optimizations such as [[sparse conditional constant propagation>>url:http://dl.acm.org/citation.cfm?id=103136||shape="rect"]]. Adjust and implement this algorithm in the context of SCGs and evaluate the result. 107 -* **Extend the SC MoC to handle priority-based variable accesses** (Bachelor/Master) 108 -Add priorities to variable accesses to extend the SC MoC and therefore the number of valid sequentially constructive synchronous programs. 109 -* **Efficient data dependency & scheduling analyses in SCCharts** (Master/Bachelor) 110 -Implement analyses for data dependency, scheduling (e.g. tick boundaries) for SCCharts to improve static scheduling of the compiler. 111 -* **Curing Schizophrenia in SCCharts **(Master/Bachelor) 112 -Develop new synchronizer to handle schizophrenia properly (e.g. depth join). 113 - 114 114 //SCCharts Simulation// 115 115 116 116 * **Visualization of Model-based Simulation via Tracing** (Bachelor/Master) ... ... @@ -139,7 +139,7 @@ 139 139 * **Quartz **(Master) 140 140 Integrate the synchronous Quartz language into KIELER for validation purposes and teaching. 141 141 142 - \\145 + 143 143 144 144 = (% style="color: rgb(0,0,0);" %)Miscellaneous Topics(%%) = 145 145 ... ... @@ -150,12 +150,3 @@ 150 150 \\ 151 151 * **Developing a domain specific language (DSL) for model railway control** (Bachelor/Master) 152 152 We maintain a model railway installation as a demonstrator for our work and as a student teaching tool. Especially for demonstations to non-technical visitors we would like to have a simple language to create controllers for the railway. 153 - 154 -\\ 155 - 156 -(% style="display: none;" %) 157 -((( 158 -408 159 -))) 160 - 161 -\\
- Confluence.Code.ConfluencePageClass[0]
-
- Id
-
... ... @@ -1,1 +1,1 @@ 1 - 378144051 +20153947 - URL
-
... ... @@ -1,1 +1,1 @@ 1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/ 37814405/Topics for Student Theses1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/20153947/Topics for Student Theses