<
From version < 84.1 >
edited by ima
on 2016/12/07 10:47
To version < 75.1 >
edited by nbw
on 2016/08/23 11:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ima
1 +XWiki.nbw
Content
... ... @@ -4,8 +4,6 @@
4 4  
5 5  **Hinweis**: Es ist Studierenden ausdrücklich empfohlen, sich frühzeitig bei den verschiedenen Arbeitsgruppen über mögliche Themen der Abschlussarbeit zu informieren. WWW-Seiten wie diese hier sind ein guter erster Anlaufpunkt, und es ist eine gute Idee, sich vor einem Gespräch mit einem potenziellen Betreuer (Professor, Assistenten ~-~- generell die Dozenten von Lehrveranstaltungen) über mögliche Themen einen Blick auf diese Seiten zu werfen. Es ist jedoch erfahrungsgemäß schwierig, auf solchen Seiten vollständige und aktuelle Informationen bereitzustellen; sie sollten daher eher als grober Indikator der jeweils möglichen Themenfelder dienen denn als konkrete Ausschreibungen. Um zu erfahren, welche Themen konkret verfügbar sind, zu dem angestrebten Zeitrahmen, sollte man auf jeden Fall die Dozenten konsultieren.
6 6  
7 -Die möglichen Themen sind im Folgenden thematisch gruppiert. Die Zahlen vor der Themenbeschreibung stehen für Prioritäten. Je kleiner die Zahl, desto wichtiger ist uns das Thema.
8 -
9 9  = Outline =
10 10  
11 11  
... ... @@ -28,12 +28,14 @@
28 28  
29 29  * **1 Tight Packing of Connected Components** (Bachelor, Master)
30 30  Different connected components of a graph are often laid out separately and combined again afterwards. This combination step often produces too much whitespace. Research relevant 2D packing literature and implement a better solution.
31 -\\
29 +{{jira id="KIELER JIRA" columns="key,summary,type,created,updated,due,assignee,reporter,priority,status,resolution" serverId="2851bd34-0bf1-3f02-ab12-7d77ccab0fae" key="KIPRA-1262"}}KIPRA-1262{{/jira}}\\
32 32  
33 -* **2 Heuristics for the Compact Layering Problem** (Bachelor, Master)
34 -Usually the layer assignment problem of the layer-based approach seeks to let as many edges as possible point into the same direction. Refraining from doing so sometimes allows more compact drawings, which so far has been evaluated using optimization problems. The task is to find and evaluate appropriate heuristics.
35 -* **2 Evaluate Impact of Reversing Edges on Humans** (Master)
36 -Reversing edges during the layer assignment problem as suggested by the previous topic may have a negative impact on the readability of diagram. User-studies should be carefully planned and conducted to answer two questions: which edges are naturally reversed by humans and does reversing too many edges worsen comprehensibility?
31 +{{jira id="KIELER JIRA" columns="key,summary,type,created,updated,due,assignee,reporter,priority,status,resolution" serverId="2851bd34-0bf1-3f02-ab12-7d77ccab0fae" key="KIPRA-1031"}}
32 +KIPRA-1031
33 +{{/jira}}
34 +
35 +
36 +
37 37  * **2 Layering Algorithms** (Bachelor, Master)
38 38  Implement an alternative algorithm for the layer assignment problem used in the layer-based approach to graph layout. The focus of the algorithm could be the consideration of the number of edge crossings, a given aspect ratio, or overall compactness.
39 39  * **2 Node Placement With a Focus on Compactness** (Master)
... ... @@ -41,16 +41,16 @@
41 41  
42 42  
43 43  
44 -* **2 Interactive Constraint Creation and Application in Automatic Layout **(Bachelor, Master)
45 -Evaluate options how to create constraints on the layout like "Node x should be placed at position y" and how to implement this in the current layout algorithms. Assess how such constraints can be persisted within the model.
46 46  * **3 Force Based Drawing with Port Constraints** (Master)
47 47  Develop methods for integrating port constraints in force-based drawing approaches. The resulting node placement shall be evaluated using an edge router such as [[libavoid>>url:http://www.adaptagrams.org/||shape="rect"]] on the model library of [[Ptolemy>>url:http://ptolemy.eecs.berkeley.edu/||shape="rect"]].
48 48  * **3 Combining Forces and Layers** (Master)**
49 49  **Design and implement a layout algorithm that combines the force-based and the layer-based approaches. The first three phases of the layer-based approach shall be replaced by a node distribution computed with a force-based approach.
48 +* **2 Interactive Constraint Creation and Application in Automatic Layout **(Bachelor/Master)
49 +Evaluate options how to create constraints on the layout like "Node x should be placed at position y" and how to implement this in the current layout algorithms. Assess how such constraints can be persisted within the model.
50 50  
51 51  
52 52  
53 -* **1 A (Simple) Edge Router** (Bachelor, Master)
53 +* **1 A Simple Edge Router** (Bachelor)
54 54  Often, people want their nodes to stay in the same place, but have the edges routed somehow. We currently don't have any layout algorithm that can do so. In this assignment, you would implement a simple edge router to solve this.
55 55  * **1 Improved Spline Edge Routing **(Master)
56 56  Our layer-based layout algorithm is capable to route edges as splines. Evaluate the results using state machine diagrams, identify possible improvements and develop solutions to address these.
... ... @@ -58,11 +58,12 @@
58 58  We maintain a variety of JUnit tests to assure our layout algorithm works properly. The environment to execute these tests grew over time and requires a face-lift. The task is to evaluate existing testing frameworks of other projects, find a clean and efficient way to specify and maintain our tests, and update the current implementation.
59 59  * **3 Orthogonal "Edge Bundling"** (Bachelor, Master)
60 60  Implement and evaluate strategies for orthogonal edge bundling within our layer-based layout algorithm.
61 +*
61 61  \\
62 62  
63 63  = Modeling Pragmatics =
64 64  
65 -**Advisors:** Reinhard von Hanxleden, Ulf Rüegg, Christoph Daniel Schulze
66 +**Advisors:** Reinhard von Hanxleden, Ulf Rüegg, Christoph Daniel Schulze, Insa Fuhrmann
66 66  
67 67  * **1 Compound Graph Exploration** (Bachelor, Master)
68 68  A new graph exploration approach should be examined which is uses different zoom levels for different compound nodes. This tries to map the "Google Maps approach" of only showing the information of interest at any given zoom level to the field of graph exploration.
... ... @@ -73,7 +73,7 @@
73 73  
74 74  = Semantics, Synchronous Languages and Model-based Design =
75 75  
76 -**Advisors:** Christian Motika, Steven Smyth, Reinhard v. Hanxleden
77 +**Advisors:** Christian Motika, Steven Smyth, Reinhard v. Hanxleden, Insa Fuhrmann
77 77  
78 78  Heute haben sich eine ganze Reihe von Modellierungssprachen durchgesetzt, die grafische Modelle verwenden. Dazu zählen beispielsweise die [[Unified Modeling Language (UML) >>url:http://de.wikipedia.org/wiki/UML||shape="rect" class="external-link"]]oder die Werkzeugketten [[Simulink/Stateflow von Mathworks >>url:http://de.wikipedia.org/wiki/Simulink||shape="rect" class="external-link"]]und [[SCADE von Esterel-Technologies>>url:http://en.wikipedia.org/wiki/SCADE||shape="rect" class="external-link"]]. Letztere werden insbesondere auch im Entwurf eingebetteter und sicherheitskritischer Systeme (z.B. in Fahr- und Flugzeugen) eingesetzt.
79 79  
... ... @@ -88,57 +88,46 @@
88 88  
89 89  
90 90  
91 -//SCCharts Modelling & Compilation//
92 +* (% style="line-height: 1.4285715;" %)**On the Pragmatics of Interactive Timing Information Feedback for Graphical Modeling **(%%)(Bachelor)(% style="line-height: 1.4285715;" %)**
93 +**(%%)Use Pragmatics concepts to enhance the timing information feedback of the Interactive Timing Analysis.
92 92  
95 +
96 +
93 93  * (% style="line-height: 1.4285715;" %)**Optimization of the SCCharts compiler/transformations **(%%)(Bachelor/Master)
94 94  Profile the actual SCCharts compiler/transformations and apply optimizations; also evaluate the possibility to use multiple cores for compilation
95 95  * (% style="line-height: 1.4285715;" %)**On the pragmatics of modeling large models in SCCharts**(%%) (Bachelor/Master)
96 96  Evaluate the possibilities to create and maintain large models in model-based languages (i.e. SCCharts) and provide suggestions for improvements
101 +* **Visualization of Model-based Simulation via Tracing** (Bachelor/Master)
102 +Use the already implemented Model-to-Model-Tracing in KIELER to visualize simulations.
103 +* **Incremental Compilation of SCEst** (Bachelor/Master)
104 +Modify the KIELER SCEst language so that KIELER is able to compile Esterel step-by-step to C via SCL.
105 +* **Incremental Model-based Compilation of Legacy C Programs** (Bachelor/Master)
106 +Modify the model-based compiler in KIELER so that it is able to compile C to (S)CCharts incrementally.
97 97  * **Extend the SC MoC to handle priority-based variable accesses** (Bachelor/Master)
98 98  Add priorities to variable accesses to extend the SC MoC and therefore the number of valid sequentially constructive synchronous programs.
99 99  * **Transformation of Circuits to SCCharts** (Bachelor/Master)
100 100  Implement a transformation that translates circuits to (dataflow) SCCharts.
101 -* **Efficient data dependency & scheduling analyses in SCCharts** (Master/Bachelor)
111 +
112 +
113 +
114 +* **Efficient data dependency & scheduling analyses in SCCharts** (Master/Bachelor)
102 102  Implement analyses for data dependency, scheduling (e.g. tick boundaries) for SCCharts to improve static scheduling of the compiler
103 103  * **Curing Schizophrenia in SCCharts **(Master/Bachelor)
104 104  Develop new synchronizer to handle schizophrenia properly (e.g. depth join).
118 +* **Environment Simulations for SCCharts** (Master/Bachelor)
119 +Develop a system to simulate environments (e.g. for Lego Mindstorms) for SCCharts in KIELER
105 105  * **SCCharts Verification** (Master/Bachelor)
106 106  Add the possibility to perfom model checking on SCCharts
107 -* **Derive M2M Transformations from Pseudocode** (Master/Bachelor)
108 -Create a Pseudocode DSL (and generator) to automatically derive M2M transformations.
109 -* **Raceyard evaluation** (Master)
110 -Evaluate the possibility for the use of SCCharts in the Raceyard context and pave the way for future experiments
111 -
112 -//SCCharts Simulation//
113 -
114 -* **Visualization of Model-based Simulation via Tracing** (Bachelor/Master)
115 -Use the already implemented Model-to-Model-Tracing in KIELER to visualize simulations.
116 -* **Environment Simulations for SCCharts** (Master/Bachelor)
117 -Develop a system to simulate environments (e.g. for Lego Mindstorms) for SCCharts in KIELER
118 -* **Core SCCharts Interpreter** (Master/Bachelor)
122 +* **Core SCCharts Interpreter** (Master/Bachelor)
119 119  Implement an Interpreter for Core SCCharts.
120 120  
121 -//Model-based C Code Compilation//
125 +
122 122  
123 -* **Incremental Model-based Compilation of Legacy C Programs** (Bachelor/Master)
124 -Modify the model-based compiler in KIELER so that it is able to compile C to (S)CCharts incrementally.
125 -* **Execution of Recursive Dataflow Code** (Master/Bachelor)
126 -* **Execution of Concurrent Dataflow Code** (Master/Bachelor)
127 -Modify the model-based dataflow compiler in KIELER so that it is able to compile recursive/concurrent C programs.
128 -For Master students: Implement both.
129 -
130 -//Synchronous Languages//
131 -
132 -* **Incremental Compilation of SCEst** (Bachelor/Master)
133 -Modify the KIELER SCEst language so that KIELER is able to compile Esterel step-by-step to C via SCL.
134 -For Master Students: Also add the possibility to compile from SCCharts to SCEst.
135 -* **eSCL - Implementing {{code language="none"}}gotopause{{/code}}** (Bachelor/Master)
136 -Create an extended dialect of the SC Language including the {{code language="none"}}gotopause{{/code}} statement and implement a transformation to SCL.
137 137  * **Quartz **(Master)
138 138  Integrate the synchronous Quartz language into KIELER for validation purposes and teaching.
129 +* **Raceyard evaluation** (Master)
130 +Evaluate the possibility for the use of SCCharts in the Raceyard context and pave the way for future experiments
139 139  
140 -
141 -
142 142  = (% style="color: rgb(0,0,0);" %)Miscellaneous Topics(%%) =
143 143  
144 144  **Advisors:** to be determined.
... ... @@ -145,6 +145,3 @@
145 145  
146 146  * **Developing an Info Screen** (Bachelor)
147 147  Info screens are screens that present data in ways that can be easily understood. This includes static data (project description graphics, members of a team, ...) as well as dynamically aggregated data (bug statistics, automatic build overviews, ...). This topic is about developing such an info screen for our group and making it easily configurable.
148 -\\
149 -* **Developing a domain specific language (DSL) for model railway control** (Bachelor/Master)
150 -We maintain a model railway installation as a demonstrator for our work and as a student teaching tool. Especially for demonstations to non-technical visitors we would like to have a simple language to create controllers for the railway.
Confluence.Code.ConfluencePageClass[0]
Id
... ... @@ -1,1 +1,1 @@
1 -20153980
1 +20152351
URL
... ... @@ -1,1 +1,1 @@
1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/20153980/Topics for Student Theses
1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/20152351/Topics for Student Theses