Changes for page Available Topics
Last modified by Niklas Rentz on 2025/03/13 09:21
<
>
edited by Alexander Schulz-Rosengarten
on 2020/08/28 12:05
on 2020/08/28 12:05
edited by Alexander Schulz-Rosengarten
on 2018/11/23 09:45
on 2018/11/23 09:45
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Objects (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -28,32 +28,36 @@ 28 28 29 29 **Advisors:** Christoph Daniel Schulze, Reinhard von Hanxleden 30 30 31 -* **Post-Processing Label Placement with Label Management** (Bachelor, Master) 32 -This is about implementing a stand-alone label placement algorithm that can place node and edge labels after everything else has already been placed. Since there might not be enough space to place all labels, the algorithm should provide different options of coping with such situations. One would be to hide such labels, another one would be to apply label management to them. 33 -* **Standalone Edge Routing **(Master) 34 34 * **Compound Graph Exploration** (Bachelor, Master) 35 35 A new graph exploration approach should be examined which is uses different zoom levels for different compound nodes. This tries to map the "Google Maps approach" of only showing the information of interest at any given zoom level to the field of graph exploration. 36 36 * **Improvements to Spline Edge Routing** (Bachelor, Master) 37 37 Spline edge routing closely follows the routes orthogonal edges would take. A Bachelor's thesis could work on improving how splines connect to their end points to make the results look more natural. A Master's thesis could look at improving the routes splines take through a diagram more generally. 38 -* **Interactivity for Further Diagram Elements and Layout Algorithms** (Bachelor, Master) 39 -* **Relative Interactivity Constraints** (Bachelor, Master) 40 -* **Polishing and Evaluating Interactive User Experiences **(Bachelor, Master) 41 -* **Interaction Techniques for Large Diagrams** (Bachelor, Master) 35 +* **Improve Orthogonal Edge Routing** (Bachelor) 36 +The layered layout approach usually uses orthogonal edges to lay out flow-based diagrams. Our orthogonal routing generator, which produces orthogonal edges, suffers from two problems which should be solved as part of a thesis. The problems are tracked as issues [[143>>url:https://github.com/eclipse/elk/issues/143||shape="rect"]] and [[318>>url:https://github.com/eclipse/elk/issues/318||shape="rect"]] in the ELK project. 42 42 * **Control Flow Graph Exploration / Visualization** (Bachelor) 43 43 Use pragmatics concepts (automatic layout, focus & context) for exploring/visualizing control flow graphs and specific paths, eg. as computed by OTAWA WCET analysis tool, eg. using KLighD. 44 44 45 -Further possible thesis topics can be found [[in ELK's GitHub repository>>url:https://github.com/eclipse/elk/issues?q=is%3Aissue+is%3Aopen+label%3Athesis||shape="rect"]]. Note, however, that some issues there may already be worked on. 46 - 47 47 = Semantics, Synchronous Languages and Model-based Design = 48 48 49 -**Advisors:** Steven Smyth, Alexander Schulz-Rosengarten, Lena Grimm,Reinhard v. Hanxleden42 +**Advisors:** Steven Smyth, Alexander Schulz-Rosengarten, Reinhard v. Hanxleden 50 50 51 51 Synchronous languages are well-established for the design of embedded, in particular safety-critical systems. One of our research areas concerns the further development of such languages and their efficient compilation. Specifically, we explore the paradigm of "sequential constructiveness" for reconciling familiar, imperative programming concepts with the sound grounding of synchronous languages. One language we have developed to try out and validate our concepts is the [[SCCharts>>doc:KIELER.SCCharts||shape="rect"]] language, which keeps evolving and thus offers many opportunities for student theses. 52 52 46 +//SCCharts Modelling & Transformations// 47 + 48 +* **SCCharts Verification** (Master/Bachelor) 49 +Add the possibility to perfom model checking on SCCharts 50 +* **Raceyard evaluation** (Master) 51 +Evaluate the possibility for the use of SCCharts in the Raceyard context and pave the way for future experiments 52 +* **Causality Visualization** 53 +Visualizing causality and scheduling problems in the diagram to guide the modeller 54 + 53 53 //SCCharts Code Generation & Optimizations// 54 54 55 55 * **Optimization of the SCCharts compiler/transformations **(Bachelor/Master) 56 56 Profile the actual SCCharts compiler/transformations and apply optimizations; also evaluate the possibility to use multiple cores for compilation. 59 +* **Efficient data dependency & scheduling analyses in SCCharts** (Master/Bachelor) 60 +Implement analyses for data dependencies and scheduling (e.g. tick boundaries) for SCCharts to improve static scheduling of the compiler. 57 57 * **Javascript code generation** (Bachelor/Master) 58 58 Implement a javascript code generation for SCCharts. Integrate with simulation and (environment) visualization to deploy a complete example as standalone web page. Compare with [[HipHop.js >>url:https://dl.acm.org/ft_gateway.cfm?id=3167440&type=pdf||shape="rect"]]based on Esterel. 59 59 ... ... @@ -61,22 +61,22 @@ 61 61 62 62 * **Visualization of Model-based Simulation via Tracing** (Bachelor/Master) 63 63 Use the already implemented Model-to-Model-Tracing in KIELER to visualize simulations. 64 -* **Core SCCharts Interpreter** **with dynamic Scheduling**(Master/Bachelor)65 -Implement an Interpreter for Core SCCharts that supports SC Policies.68 +* **Core SCCharts Interpreter** (Master/Bachelor) 69 +Implement an Interpreter for Core SCCharts. 66 66 67 67 //Model-based C Code Compilation// 68 68 73 +* **Incremental Model-based Compilation of Legacy C Programs** (Bachelor/Master) 74 +Modify the model-based compiler in KIELER so that it is able to compile C to (S)CCharts incrementally. 69 69 * **Execution of Recursive Dataflow Code** (Master/Bachelor) 70 70 * **Execution of Concurrent Dataflow Code** (Master/Bachelor) 71 71 Modify the model-based dataflow compiler in KIELER so that it is able to compile recursive/concurrent C programs. 72 72 For Master students: Implement both. 73 73 74 -// Blech//80 +//Synchronous Languages// 75 75 76 -* Extraction of mode diagrams from Blech\\ 77 - 78 -{{view-file att--filename="Extraction of mode diagrams.pdf" height="250"/}} 79 - 82 +* **eSCL - Implementing {{code language="none"}}gotopause{{/code}}** (Bachelor/Master) 83 +Create an extended dialect of the SC Language including the {{code language="none"}}gotopause{{/code}} statement and implement a transformation to SCL. 80 80 \\ 81 81 82 82 \\
- Confluence.Code.ConfluencePageClass[0]
-
- Id
-
... ... @@ -1,1 +1,1 @@ 1 -7 86760511 +52723736 - URL
-
... ... @@ -1,1 +1,1 @@ 1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/7 8676051/Topics for Student Theses1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/52723736/Topics for Student Theses