<
From version < 104.1 >
edited by cds
on 2019/02/21 14:40
To version < 110.1 >
edited by Alexander Schulz-Rosengarten
on 2020/08/28 11:59
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.cds
1 +XWiki.als
Content
... ... @@ -28,10 +28,17 @@
28 28  
29 29  **Advisors:** Christoph Daniel Schulze, Reinhard von Hanxleden
30 30  
31 +* **Post-Processing Label Placement with Label Management** (Bachelor, Master)
32 +This is about implementing a stand-alone label placement algorithm that can place node and edge labels after everything else has already been placed. Since there might not be enough space to place all labels, the algorithm should provide different options of coping with such situations. One would be to hide such labels, another one would be to apply label management to them.
33 +* **Standalone Edge Routing **(Master)
31 31  * **Compound Graph Exploration** (Bachelor, Master)
32 32  A new graph exploration approach should be examined which is uses different zoom levels for different compound nodes. This tries to map the "Google Maps approach" of only showing the information of interest at any given zoom level to the field of graph exploration.
33 33  * **Improvements to Spline Edge Routing** (Bachelor, Master)
34 34  Spline edge routing closely follows the routes orthogonal edges would take. A Bachelor's thesis could work on improving how splines connect to their end points to make the results look more natural. A Master's thesis could look at improving the routes splines take through a diagram more generally.
38 +* **Interactivity for Further Diagram Elements and Layout Algorithms** (Bachelor, Master)
39 +* **Relative Interactivity Constraints** (Bachelor, Master)
40 +* **Polishing and Evaluating Interactive User Experiences **(Bachelor, Master)
41 +* **Interaction Techniques for Large Diagrams** (Bachelor, Master)
35 35  * **Control Flow Graph Exploration / Visualization** (Bachelor)
36 36  Use pragmatics concepts (automatic layout, focus & context) for exploring/visualizing control flow graphs and specific paths, eg. as computed by OTAWA WCET analysis tool, eg. using KLighD.
37 37  
... ... @@ -39,19 +39,10 @@
39 39  
40 40  = Semantics, Synchronous Languages and Model-based Design =
41 41  
42 -**Advisors:** Steven Smyth, Alexander Schulz-Rosengarten, Reinhard v. Hanxleden
49 +**Advisors:** Steven Smyth, Alexander Schulz-Rosengarten, Lena Grimm, Reinhard v. Hanxleden
43 43  
44 44  Synchronous languages are well-established for the design of embedded, in particular safety-critical systems. One of our research areas concerns the further development of such languages and their efficient compilation. Specifically, we explore the paradigm of "sequential constructiveness" for reconciling familiar, imperative programming concepts with the sound grounding of synchronous languages. One language we have developed to try out and validate our concepts is the [[SCCharts>>doc:KIELER.SCCharts||shape="rect"]] language, which keeps evolving and thus offers many opportunities for student theses.
45 45  
46 -//SCCharts Modelling & Transformations//
47 -
48 -* **SCCharts Verification** (Master/Bachelor)
49 -Add the possibility to perfom model checking on SCCharts
50 -* **Raceyard evaluation** (Master)
51 -Evaluate the possibility for the use of SCCharts in the Raceyard context and pave the way for future experiments
52 -* **Causality Visualization**
53 -Visualizing causality and scheduling problems in the diagram to guide the modeller
54 -
55 55  //SCCharts Code Generation & Optimizations//
56 56  
57 57  * **Optimization of the SCCharts compiler/transformations **(Bachelor/Master)
... ... @@ -65,18 +65,26 @@
65 65  
66 66  * **Visualization of Model-based Simulation via Tracing** (Bachelor/Master)
67 67  Use the already implemented Model-to-Model-Tracing in KIELER to visualize simulations.
68 -* **Core SCCharts Interpreter** (Master/Bachelor)
69 -Implement an Interpreter for Core SCCharts.
66 +* **Core SCCharts Interpreter** **with dynamic Scheduling** (Master/Bachelor)
67 +Implement an Interpreter for Core SCCharts that supports SC Policies.
68 +* **Microstep-Simulation of Statecharts** (Master/Bachelor)
69 +Implement a method to do microstep simulation with SCCharts.
70 +* **Improve the Live Debugging of Statecharts** (Bachelor)
71 +Implement a dedicated debugging view for SCCharts.
70 70  
71 71  //Model-based C Code Compilation//
72 72  
73 -* **Incremental Model-based Compilation of Legacy C Programs** (Bachelor/Master)
74 -Modify the model-based compiler in KIELER so that it is able to compile C to (S)CCharts incrementally.
75 75  * **Execution of Recursive Dataflow Code** (Master/Bachelor)
76 76  * **Execution of Concurrent Dataflow Code** (Master/Bachelor)
77 77  Modify the model-based dataflow compiler in KIELER so that it is able to compile recursive/concurrent C programs.
78 78  For Master students: Implement both.
79 79  
80 +//Blech//
81 +
82 +* Extraction of mode diagrams from Blech\\
83 +
84 +{{view-file att--filename="Extraction of mode diagrams.pdf" height="250"/}}
85 +
80 80  \\
81 81  
82 82  \\
Confluence.Code.ConfluencePageClass[0]
Id
... ... @@ -1,1 +1,1 @@
1 -60522749
1 +78676049
URL
... ... @@ -1,1 +1,1 @@
1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/60522749/Topics for Student Theses
1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/RTSYS/pages/78676049/Topics for Student Theses