<
From version < 20.1 >
edited by Alexander Schulz-Rosengarten
on 2018/11/22 14:46
To version < 10.1 >
edited by Alexander Schulz-Rosengarten
on 2014/01/03 17:00
>
Change comment: added example for Mapping and TransformationTree creation

Summary

Details

Page properties
Content
... ... @@ -1,11 +1,7 @@
1 1  = KTM - KIELER Transformation Mapping =
2 2  
3 -{{panel bgColor="orange" title="Deprecated since 0.11"}}
4 -This article is deprecated. KTM was redesigned is now available as KiTT included in KiCool.
5 -{{/panel}}
3 +
6 6  
7 -\\
8 -
9 9  === Topics ===
10 10  
11 11  
... ... @@ -20,7 +20,7 @@
20 20  
21 21  == Transformation Tree Model ==
22 22  
23 -\\
19 +
24 24  
25 25  To offer a mapping between model-elements during multiple transformations KTM introduces a model called TransformationTree to represent these relations.
26 26  
... ... @@ -30,11 +30,11 @@
30 30  
31 31  The structure of the model can be separated into two parts.
32 32  
33 -**First part** (upper half) is a tree of transformations. Each ModelWrapper-class is a representation of a model which is transformed. So ModelWrapper are nodes and ModelTransformations are edges. Thus the ModelWrapper representing the initial-source-model of all transformation is also the root of a TransformationTree-model.
29 +**First part** (upper half) is a tree of transformations. Each Model-class is a representation of a concrete model which is transformed. So models are nodes and ModelTransformations are edges. Thus the Model representing the root-model of a tree is also the root of a concrete TransformationTree-model.
34 34  
35 -**Second part** (lower half) is object-mapping. Instances of models contain EObjects as their elements, which are represented by EObjectWrapper-class in this metamodel. The EObjectWrapper of two models are connected with EObjectTransformations-class to express their origination relationship in corresponding model transformation.
31 +**Second part** (lower half) is object-mapping. Instances of models contain EObjects as their elements, which are represented by Element-class in TransformationTree metamodel. The Elements of two models are connected with ElementTransformations-class to model their origination relationship in corresponding model transformation.
36 36  
37 -\\
33 +
38 38  
39 39  An abstract example of an instance of this model:
40 40  
... ... @@ -66,8 +66,8 @@
66 66  
67 67  == Implementation Details ==
68 68  
69 -* All references to EObjects in EObjectWrapper are references to a copy of the original EObject. This allows to represent immutable mapping. To reidentify corresponding EObjects TransformationTreeExtensions provides search functions which will check for structural matching models.
70 -* Models in TransformationTrees may be transient. This indicates that all references to EObjects in all Elements of the transient model are removed. Thus these models can't be source of a new appended transformation and can not be associated with it's original model. The main propose of this feature is to improve scalability of TransformationTrees by removing unnecessary references to internal model, but preserve traversing functionality of the object-mapping.
65 +* All references to EObjects are references to a copy of the original EObject. This allows to represent immutable mapping. To reidentify corresponding EObjects TransformationTreeExtensions provides search functions which will check for structural matching models.
66 +* Models in TransformationTrees may be transient. This indicates that all references to EObjects in all Elements of the transient model are removed. Thus these models can't be source of a new appended transformation and can not be associated with it's original model. The main propose of this feature is to improve scalability of TransformationTrees by removing unnecessary references to internal model, but preserve traversing functionality of the ObjectMapping.
71 71  * Mappings can be incomplete causing resulting transfromation tree to be incomplete. A incomplete tree does not represent every object in a model with a corresponding Element. This may break some paths of element transformations, but allows to omit model-immanent objects like annotations from mapping. TranformationMapping extension provies a function to check completeness of mapping against its models.
72 72  
73 73  ----
... ... @@ -74,36 +74,32 @@
74 74  
75 75  == Example ==
76 76  
77 -In this example we will perform some transformations on SCCharts.
78 -
79 -The source chart is a ABO, the "Hello World" of SCCharts.
80 -
81 -ABO is already a CoreSCChart, so we will perform normalization and a transformation to SCG.
82 -
83 83  === Creating Mapping during Transformation ===
84 84  
85 -In order to note every single element transformation of a model transformation, we use the TransformationMapping extension.
75 +The following code is a modifcation of the tranformation "Spilt Trigger and Effects" of SCCharts.
86 86  
87 -After each creation of new Objects for transformed model the mapping must be updated with it's origin information.
77 +{{code title="Modified SCChart Transformation" theme="Eclipse" linenumbers="true" language="java" firstline="1" collapse="true"}}
78 +package de.cau.cs.kieler.ktm.test.transformations
88 88  
89 -The codeblock blow show a snipped of SCChartCoreTransformation with additional mapping registration.
90 -
91 -\\
92 -
93 -{{code language="java" theme="Eclipse" firstline="1" title="transformTriggerEffect CodeSnipped" linenumbers="true" collapse="true"}}
94 -...
95 -  @Inject
80 +import com.google.inject.Inject
81 +import de.cau.cs.kieler.ktm.extensions.TransformationMapping
82 +import de.cau.cs.kieler.sccharts.Region
83 +import de.cau.cs.kieler.sccharts.Transition
84 +import de.cau.cs.kieler.sccharts.extensions.SCChartsExtension
85 +/**
86 + * @author als
87 + */
88 +class SCChartTestTransformation {
89 + @Inject
96 96   extension TransformationMapping
91 + @Inject
92 + extension SCChartsExtension
97 97  
98 -...
99 -
100 - // NEW - Mapping access delegation
94 + // -- Mapping Access
101 101   def extractMapping() {
102 102   extractMappingData;
103 103   }
104 104  
105 -...
106 -
107 107   //-------------------------------------------------------------------------
108 108   //-- S P L I T T R A N S I T I O N --
109 109   //-------------------------------------------------------------------------
... ... @@ -114,7 +114,6 @@
114 114   // Set the T_eff to have T's target state. Set T to have the target C.
115 115   // Add T_eff to C's outgoing transitions.
116 116   def Region transformTriggerEffect(Region rootRegion) {
117 - clearMapping; //NEW - clear previous mapping information to assure a single consistent mapping
118 118   // Clone the complete SCCharts region
119 119   var targetRootRegion = rootRegion.mappedCopy; //NEW - mapping information (changed copy to mappedCopy)
120 120   // Traverse all transitions
... ... @@ -121,160 +121,61 @@
121 121   for (targetTransition : targetRootRegion.getAllContainedTransitions) {
122 122   targetTransition.transformTriggerEffect(targetRootRegion);
123 123   }
124 - val completeness = checkMappingCompleteness(rootRegion, targetRootRegion); //NEW - DEBUG
125 125   targetRootRegion;
126 126   }
127 127   def void transformTriggerEffect(Transition transition, Region targetRootRegion) {
128 - // Only apply this to transition that have both, a trigger (or is a termination) and one or more effects
129 - if (((transition.trigger != null || !transition.immediate || transition.typeTermination) && !transition.effects.nullOrEmpty) ||
130 - transition.effects.size > 1) {
118 + // Only apply this to transition that have both, a trigger and one or more effects
119 + if (((transition.trigger != null || !transition.immediate) && !transition.effects.nullOrEmpty) || transition.effects.size > 1) {
131 131   val targetState = transition.targetState
132 132   val parentRegion = targetState.parentRegion
133 133   val transitionOriginalTarget = transition.targetState
134 134   var Transition lastTransition = transition
135 - val firstEffect = transition.effects.head
136 136   for (effect : transition.effects.immutableCopy) {
137 - // Optimization: Prevent transitions without a trigger
138 - if(transition.immediate && transition.trigger == null && firstEffect == effect) {
139 - // skip
140 - } else {
141 - val effectState = parentRegion.createState(GENERATED_PREFIX + "S")
142 - effectState.mapParents(transition.mappedParents); //NEW - mapping information
143 - effectState.uniqueName
144 - val effectTransition = createImmediateTransition.addEffect(effect)
145 - effectTransition.mapParents(transition.mappedParents); //NEW - mapping information
146 -
147 - effectTransition.setSourceState(effectState)
148 - lastTransition.setTargetState(effectState)
149 - lastTransition = effectTransition
150 - }
125 + val effectState = parentRegion.createState(targetState.id + effect.id)
126 + effectState.mapParents(transition.mappedParents); //NEW - mapping information
127 + effectState.setTypeConnector
128 + val effectTransition = createImmediateTransition.addEffect(effect)
129 + effectTransition.mapParents(transition.mappedParents); //NEW - mapping information
130 + effectTransition.setSourceState(effectState)
131 + lastTransition.setTargetState(effectState)
132 + lastTransition = effectTransition
151 151   }
152 152   lastTransition.setTargetState(transitionOriginalTarget)
153 153   }
154 154   }
137 +}
155 155  {{/code}}
156 156  
157 -=== Create TransformationTree ===
140 +=== Create TransformationTree with Mapping ===
158 158  
159 -The following code will now perform each transformation stepwise and updates a transformation tree each step.
142 +To test the transformation and mapping we will transform th following ABO-SCChart.
160 160  
161 -\\
144 +[[image:attach:example_abo.jpeg]]
162 162  
163 -{{code language="java" theme="Eclipse" firstline="1" title="Transform and create TranformationTree" linenumbers="true" collapse="true"}}
164 -aboSplitTE = SCCtransformation.transformTriggerEffect(abo);
146 +The following code snipped performs the transformation on our ABO-example, extracts the mapping and creates a transformation tree.
165 165  
166 -ModelWrapper aboSplitTEModel =
167 - transformationTree.initializeTransformationTree(SCCtransformation.extractMapping(), "TriggerEffect", abo, "coreSCChart", aboSplitTE, "coreSCChart-splitTriggerEffect");
148 +{{code title="Transform and create TranformationTree" theme="Eclipse" linenumbers="true" language="java" firstline="1" collapse="true"}}
149 +aboSplitTE = transformation.transformTriggerEffect(abo);
168 168  
169 -aboNormalized = SCCtransformation.transformSurfaceDepth(aboSplitTE);
151 +Model aboSplitTEModel = transformationTreeExtensions.initializeTransformationTree(
152 + transformation.extractMapping(),
153 + "splitTriggerEffect",
154 + abo, "ABO",
155 + aboSplitTE, "ABO-splitTriEff");
170 170  
171 -ModelWrapper aboNormalizedModel =
172 - transformationTree.addTransformationToTree(SCCtransformation.extractMapping(), aboSplitTEModel, "SurfaceDepth", aboSplitTE, aboNormalized, "normalizedCoreSCChart");
173 -
174 -aboSCG = SCGtransformation.transformSCG(aboNormalized);
175 -
176 -ModelWrapper aboSCGModel =
177 - transformationTree.addTransformationToTree(SCGtransformation.extractMapping(), aboNormalizedModel, "SCC2SCG", aboNormalized, aboSCG,"SCG");
178 -
179 -tree = transformationTree.root(aboSCGModel);
157 +tranformationTree = transformationTreeExtensions.root(aboSplitTEModel);
180 180  {{/code}}
181 181  
182 -\\
160 +The result of transformation is the following SCChart. ABO-splitTriEff.
183 183  
184 -The resulting TransformationTree has following structure and representing each step and model of the transformation.
162 +[[image:attach:example_abo_splitTE.jpeg]]
185 185  
186 -\\
164 +Resulting TransformationTree has following structure.
187 187  
188 -(% class="wrapped" %)
189 -|=(% style="text-align: center;" colspan="4" %)(% style="text-align: center;" colspan="4" %)
190 -(((
191 -(% class="content-wrapper" %)
192 -(((
193 193  [[image:attach:example_tree.jpeg]]
194 -)))
195 -)))
196 -|(% style="text-align: center;" colspan="1" %)(% style="text-align: center;" colspan="1" %)
197 -(((
198 -(% class="content-wrapper" %)
199 -(((
200 -[[image:attach:example_abo.jpeg]]
201 -)))
202 -)))|(% style="text-align: center;" colspan="1" %)(% style="text-align: center;" colspan="1" %)
203 -(((
204 -(% class="content-wrapper" %)
205 -(((
206 -[[image:attach:example_abo_splitTE.jpeg]]
207 -)))
208 -)))|(% style="text-align: center;" colspan="1" %)(% style="text-align: center;" colspan="1" %)
209 -(((
210 -(% class="content-wrapper" %)
211 -(((
212 -[[image:attach:example_abo_norm.jpeg]]
213 -)))
214 -)))|(% style="text-align: center;" colspan="1" %)(% style="text-align: center;" colspan="1" %)
215 -(((
216 -(% class="content-wrapper" %)
217 -(((
218 -[[image:attach:example_abo_scg.jpeg]]
219 -)))
220 -)))
221 221  
222 -\\
168 +Furthermore the TransformationTree now contains the following mapping information.
223 223  
224 -Furthermore the TransformationTree now contains mapping information for the whole transformation chain.
170 +[[image:attach:example_tree_transformation.jpeg]]
225 225  
226 -Now we can use an additional feature of KTM, the resolving of mappings between arbitary models.
227 -
228 -The following code has starts with an instance of the initial ABO SCChart and SCG, along with the TranformationTree above.
229 -
230 -\\
231 -
232 -{{code language="java" theme="Eclipse" firstline="1" title="resolveMapping" linenumbers="true" collapse="true"}}
233 -@Inject
234 -extension TransformationTreeExtensions
235 -
236 -//Find nodes of model instances in tree
237 -val aboSCCModelWrapper = transformationTree.findModel(aboSCC,"coreSCChart");
238 -val aboSCGModelWrapper = transformationTree.findModel(aboSCG,"SCG");
239 -
240 -//resolve
241 -val mapping = resolvemapping(aboSCCModelWrapper, aboSCC, aboSCGModelWrapper, aboSCG);
242 -{{/code}}
243 -
244 -\\
245 -
246 -The returned mapping is a multi mapping between all object in aboSCC and their resulting objects in aboSCG.
247 -
248 -This mapping can now displayed in models or used for various information propagation between elements of the models.
249 -
250 -[[image:attach:example_abo_resolved.jpeg]]
251 -
252 -\\
253 -
254 -Also a more detailed view is available, showing all EObjects relation.
255 -
256 -\\
257 -
258 -[[image:attach:example_abo_resolved_elements.jpeg]]
259 -
260 -== Visualisation ==
261 -
262 -If you have a TransformationTree file (.ktmt) you can open a KLighD visualisation by right-clicking on file in project-tree and selecting //'Open Transformation Tree//'.
263 -
264 -=== Diagram Options ===
265 -
266 -//Model Visualisation//: If enabled tries to visaulize selected models with KLighD else a EObject-represenation is created.
267 -
268 -//EObject Attributes//: If enabled shows Attributes of EObject in EObject-represenation.
269 -
270 -//Selective mapping edges//: If enabled shows only selected mapping edges.
271 -
272 -=== Interaction ===
273 -
274 -//CTRL+CLICK//: Selects a Node in TransformationTree as source and displays its represented model.
275 -
276 -//SHIFT+CLICK//: Selects a Node in TransformationTree as target, displays both models and the resolved mapping as edges (currenly only between States/Regions).
277 -
278 -If Selective selective mapping edge is enabled no mapping edges are displayed. If you select (//CLICK//) an element in one of the two model its relation to corresponding element is displayed. You can multi-select with //CTRL+CLICK// or deselect by clicking on an edge.
279 -
280 -\\
172 +Here you can see the effect of the transformation causing the transformation to split up.
Confluence.Code.ConfluencePageClass[0]
Id
... ... @@ -1,1 +1,1 @@
1 -50823223
1 +8651563
URL
... ... @@ -1,1 +1,1 @@
1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/KIELER/pages/50823223/Transformation Mapping (KTM)
1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/KIELER/pages/8651563/Transformation Mapping (KTM)