<
From version < 32.1 >
edited by cds
on 2014/11/27 16:27
To version < 46.2 >
edited by Alexander Schulz-Rosengarten
on 2023/07/11 10:25
>
Change comment: Update document after refactoring.

Summary

Details

Page properties
Parent
... ... @@ -1,0 +1,1 @@
1 +Kieler.Discontinued Projects.Layout Algorithms (KLay).KLay Layered.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.cds
1 +XWiki.als
Content
... ... @@ -8,11 +8,11 @@
8 8  
9 9  = Overview =
10 10  
11 -For a general introduction on layout options, see [[the KIML documentation>>doc:KIML Layout Options]]. KLay Layered supports layout options defined by KIML and defines additional custom layout options.
11 +For a general introduction on layout options, see [[the KIML documentation>>doc:Kieler.Discontinued Projects.Infrastructure for Meta Layout (KIML).KIML Layout Options.WebHome]]. KLay Layered supports layout options defined by KIML and defines additional custom layout options.
12 12  
13 13  == Supported KIML Layout Options ==
14 14  
15 -KLay Layered supports the following standard layout options defined by KIML. Note that the default value may be altered (highlighted yellow). These layout options are documented on [[KIML's Layout Options page>>doc:KIML Layout Options]].
15 +KLay Layered supports the following standard layout options defined by KIML. Note that the default value may be altered (highlighted yellow). These layout options are documented on [[KIML's Layout Options page>>doc:Kieler.Discontinued Projects.Infrastructure for Meta Layout (KIML).KIML Layout Options.WebHome]].
16 16  
17 17  |=(((
18 18  Option
... ... @@ -156,7 +156,7 @@
156 156  Parents
157 157  )))|(% class="highlight-yellow" data-highlight-colour="yellow" %)(% class="highlight-yellow" data-highlight-colour="yellow" %)
158 158  (((
159 -POLYLINE
159 +ORTHOGONAL
160 160  )))
161 161  |(% colspan="1" %)(% colspan="1" %)
162 162  (((
... ... @@ -279,6 +279,22 @@
279 279  (((
280 280  
281 281  )))
282 +|(% colspan="1" %)(% colspan="1" %)
283 +(((
284 +(% class="confluence-link" %)Port Anchor Offset
285 +)))|(% colspan="1" %)(% colspan="1" %)
286 +(((
287 +de.cau.cs.kieler.klay.layered.portAnchor
288 +)))|(% colspan="1" %)(% colspan="1" %)
289 +(((
290 +Object
291 +)))|(% colspan="1" %)(% colspan="1" %)
292 +(((
293 +Ports
294 +)))|(% colspan="1" %)(% colspan="1" %)
295 +(((
296 +
297 +)))
282 282  |(((
283 283  Port Constraints
284 284  )))|(((
... ... @@ -463,6 +463,44 @@
463 463  (((
464 464  Dependency
465 465  )))
482 +|(% colspan="1" %)(% colspan="1" %)
483 +(((
484 +[[Add Unnecessary Bendpoints>>doc:||anchor="addUnnecessaryBendpoints"]]
485 +)))|(% colspan="1" %)(% colspan="1" %)
486 +(((
487 +de.cau.cs.kieler.klay.layered.unnecessaryBendpoints
488 +)))|(% colspan="1" %)(% colspan="1" %)
489 +(((
490 +Boolean
491 +)))|(% colspan="1" %)(% colspan="1" %)
492 +(((
493 +Parents
494 +)))|(% colspan="1" %)(% colspan="1" %)
495 +(((
496 +false
497 +)))|(% colspan="1" %)(% colspan="1" %)
498 +(((
499 +
500 +)))
501 +|(% colspan="1" %)(% colspan="1" %)
502 +(((
503 +[[Content Alignment>>doc:||anchor="contentAlignment"]]
504 +)))|(% colspan="1" %)(% colspan="1" %)
505 +(((
506 +de.cau.cs.kieler.klay.layered.contentAlignment
507 +)))|(% colspan="1" %)(% colspan="1" %)
508 +(((
509 +EnumSet
510 +)))|(% colspan="1" %)(% colspan="1" %)
511 +(((
512 +Parents
513 +)))|(% colspan="1" %)(% colspan="1" %)
514 +(((
515 +V_TOP, H_LEFT
516 +)))|(% colspan="1" %)(% colspan="1" %)
517 +(((
518 +
519 +)))
466 466  |(((
467 467  [[Crossing Minimization>>doc:||anchor="crossingMinimization"]]
468 468  )))|(((
... ... @@ -519,7 +519,7 @@
519 519  Parents
520 520  )))|(% colspan="1" %)(% colspan="1" %)
521 521  (((
522 -SMART
576 +ALWAYS_DOWN
523 523  )))|(% colspan="1" %)(% colspan="1" %)
524 524  (((
525 525  
... ... @@ -621,25 +621,6 @@
621 621  )))
622 622  |(% colspan="1" %)(% colspan="1" %)
623 623  (((
624 -[[Maximal Iterations>>doc:||anchor="maximalIterations"]]
625 -)))|(% colspan="1" %)(% colspan="1" %)
626 -(((
627 -de.cau.cs.kieler.klay.layered.nodeLayering
628 -)))|(% colspan="1" %)(% colspan="1" %)
629 -(((
630 -Int
631 -)))|(% colspan="1" %)(% colspan="1" %)
632 -(((
633 -Parents
634 -)))|(% colspan="1" %)(% colspan="1" %)
635 -(((
636 -10.000.000
637 -)))|(% colspan="1" %)(% colspan="1" %)
638 -(((
639 -nodeLayering=NETWORK_SIMPLEX
640 -)))
641 -|(% colspan="1" %)(% colspan="1" %)
642 -(((
643 643  [[Merge Edges>>doc:||anchor="mergeEdges"]]
644 644  )))|(% colspan="1" %)(% colspan="1" %)
645 645  (((
... ... @@ -709,25 +709,6 @@
709 709  (((
710 710  
711 711  )))
712 -|(% colspan="1" %)(% colspan="1" %)
713 -(((
714 -[[Port Anchor Offset>>doc:||anchor="portAnchor"]]
715 -)))|(% colspan="1" %)(% colspan="1" %)
716 -(((
717 -de.cau.cs.kieler.klay.layered.portAnchor
718 -)))|(% colspan="1" %)(% colspan="1" %)
719 -(((
720 -Object
721 -)))|(% colspan="1" %)(% colspan="1" %)
722 -(((
723 -Ports
724 -)))|(% colspan="1" %)(% colspan="1" %)
725 -(((
726 -
727 -)))|(% colspan="1" %)(% colspan="1" %)
728 -(((
729 -
730 -)))
731 731  |(((
732 732  [[Thoroughness>>doc:||anchor="thoroughness"]]
733 733  )))|(((
... ... @@ -737,7 +737,7 @@
737 737  )))|(((
738 738  Parents
739 739  )))|(((
740 -7
756 +10
741 741  )))|(% colspan="1" %)(% colspan="1" %)
742 742  (((
743 743  
... ... @@ -745,79 +745,67 @@
745 745  
746 746  = Detailed Documentation =
747 747  
748 -This section explains every layout option in more detail. See [[the KIML documentation>>doc:KIML Layout Options]] for more information on KIML layout options. Those options are only mentioned here if KLay Layered adds some custom behavior.
764 +This section explains every layout option in more detail. See [[the KIML documentation>>doc:Kieler.Discontinued Projects.Infrastructure for Meta Layout (KIML).KIML Layout Options.WebHome]] for more information on KIML layout options. Those options are only mentioned here if KLay Layered adds some custom behavior.
749 749  
750 -== Crossing Minimization ==
766 +== ==
751 751  
768 +{{id name="addUnnecessaryBendpoints"/}}Add Unnecessary BendpointsBy default, KLay Layered tries not to add bendpoints to an edge at positions where the edge doesn't change direction since there's no real bend there. Turning this option on forces such bend points. More specifically, a bend point is added for each edge that spans more than one layer at the point where it crosses a layer. If hierarchy layout is turned on, a bend point is also added whenever the edge crosses a hierarchy boundary.
752 752  
770 +== ==
753 753  
754 -{{id name="crossingMinimization"/}}
772 +{{id name="contentAlignment"/}}Content AlignmentDetermines how the content of compound nodes is to be aligned if the compound node's size exceeds the bounding box of the content (i.e. child nodes). This might be the case if for a compound node the size constraint of {{code language="none"}}MINIMUM_SIZE{{/code}} is set and the minimum width and height are set large enough.
755 755  
756 -Crossing minimization determines the ordering of nodes in each layer, which influences the number of edge crossings. This option switches between one of several algorithms that can be used to minimize crossings. Possible values are:
774 +{{note}}
775 +This option is not tested for external ports with port constraints {{code language="none"}}FIXED_RATIO{{/code}} or {{code language="none"}}FIXED_POS{{/code}}.
776 +{{/note}}
757 757  
758 -* LAYER_SWEEP
778 +== ==
779 +
780 +{{id name="crossingMinimization"/}}Crossing MinimizationCrossing minimization determines the ordering of nodes in each layer, which influences the number of edge crossings. This option switches between one of several algorithms that can be used to minimize crossings. Possible values are:
781 +
782 +* {{code language="none"}}LAYER_SWEEP{{/code}}
759 759  The layer sweep algorithm iterates multiple times over the layers, trying to find node orderings that minimize the number of crossings. The algorithm uses randomization to increase the odds of finding a good result. To improve its results, consider increasing the //Thoroughness// option, which influences the number of iterations done. The //Randomization// seed also influences results.
760 -* INTERACTIVE
784 +* {{code language="none"}}INTERACTIVE{{/code}}
761 761  Orders the nodes of each layer by comparing their positions before the layout algorithm was started. The idea is that the relative order of nodes as it was before layout was applied is not changed. This of course requires valid positions for all nodes to have been set on the input graph before calling the layout algorithm. The interactive layer sweep algorithm uses the //Interactive Reference Point// option to determine which reference point of nodes are used to compare positions.
762 762  
763 -== Cycle Breaking ==
787 +== ==
764 764  
789 +{{id name="cycleBreaking"/}}Cycle BreakingKLay Layered tries to position nodes in a way that all edges point rightwards. This is not possible if the input graph has cycles. Such cycles have to be broken by reversing as few edges as possible. The reversed edges end up pointing leftwards in the resulting diagram. There are different cycle breaking algorithms available:
765 765  
766 -
767 -{{id name="cycleBreaking"/}}
768 -
769 -KLay Layered tries to position nodes in a way that all edges point rightwards. This is not possible if the input graph has cycles. Such cycles have to be broken by reversing as few edges as possible. The reversed edges end up pointing leftwards in the resulting diagram. There are different cycle breaking algorithms available:
770 -
771 -* GREEDY
791 +* {{code language="none"}}GREEDY{{/code}}
772 772  This algorithm reverses edges greedily. The algorithm tries to avoid edges that have the //Priority// property set.
773 -* INTERACTIVE
793 +* {{code language="none"}}INTERACTIVE{{/code}}
774 774  The interactive algorithm tries to reverse edges that already pointed leftwards in the input graph. This requires node and port coordinates to have been set to sensible values.
775 775  
776 -== Direction ==
796 +== ==
777 777  
798 +{{id name="direction"/}}DirectionThe layout direction influences where the majority of edges in the final layout will point to. With data flow diagrams, this will usually be to the right. With control flow diagrams, it might be downwards. The layout direction defaults to {{code language="none"}}UNDEFINED{{/code}}. This causes KLay Layered to calculate a layout direction based on the {{code language="none"}}ASPECT_RATIO{{/code}} setting. As of now, if the aspect ratio is >=1 (that is, if the diagram should be wider than it is high), the direction is set to {{code language="none"}}RIGHT{{/code}}. Otherwise, it is set to {{code language="none"}}DOWN{{/code}}.
778 778  
800 +== ==
779 779  
780 -{{id name="direction"/}}
802 +{{id name="edgeSpacingFactor"/}}Edge Spacing FactorThe edge spacing factor determines the amount of space between edges, relative to the regular //Spacing// value. The idea is that we don't need as much space between edges as we do between nodes.
781 781  
782 -The layout direction influences where the majority of edges in the final layout will point to. With data flow diagrams, this will usually be to the right. With control flow diagrams, it might be downwards. The layout direction defaults to {{code language="none"}}UNDEFINED{{/code}}. This causes KLay Layered to calculate a layout direction based on the {{code language="none"}}ASPECT_RATIO{{/code}} setting. As of now, if the aspect ratio is >=1 (that is, if the diagram should be wider than it is high), the direction is set to {{code language="none"}}RIGHT{{/code}}. Otherwise, it is set to {{code language="none"}}DOWN{{/code}}.
783 -
784 -== Edge Spacing Factor ==
785 -
786 -
787 -
788 -{{id name="edgeSpacingFactor"/}}
789 -
790 -The edge spacing factor determines the amount of space between edges, relative to the regular //Spacing// value. The idea is that we don't need as much space between edges as we do between nodes.
791 -
792 792  [[image:attach:edgeSpacingFactor.png]]
793 793  
794 -== Edge Label Side Selection ==
806 +== ==
795 795  
808 +{{id name="edgeLabelSideSelection"/}}Edge Label Side SelectionDetermines how KLay Layered places edge labels. The following strategies are available:
796 796  
797 -
798 -{{id name="edgeLabelSideSelection"/}}
799 -
800 -Determines how KLay Layered places edge labels. The following strategies are available:
801 -
802 -* ALWAYS_UP
810 +* {{code language="none"}}ALWAYS_UP{{/code}}
803 803  Always places edge labels above the edge.
804 -* ALWAYS_DOWN
812 +* {{code language="none"}}ALWAYS_DOWN{{/code}}
805 805  Always places edge labels below the edge.
806 -* DIRECTION_UP
814 +* {{code language="none"}}DIRECTION_UP{{/code}}
807 807  Places edge labels above edges pointing right, and below edges pointing left.
808 -* DIRECTION_DOWN
816 +* {{code language="none"}}DIRECTION_DOWN{{/code}}
809 809  Places edge labels below edges pointing right, and above edges pointing left.
810 -* SMART
818 +* {{code language="none"}}SMART{{/code}}
811 811  Uses a heuristic that determines the best edge label placement, also taking the placement of port labels into account.
812 812  
813 -== Feedback Edges ==
821 +== ==
814 814  
823 +{{id name="feedbackEdges"/}}Feedback EdgesFeedback edges are edges that feed the output of a node back to be the input of a previous node. This option controls how feedback edges are routed if port constraints are FREE. This influences how much emphasis is put on feedback edges.
815 815  
816 -
817 -{{id name="feedbackEdges"/}}
818 -
819 -Feedback edges are edges that feed the output of a node back to be the input of a previous node. This option controls how feedback edges are routed if port constraints are FREE. This influences how much emphasis is put on feedback edges.
820 -
821 821  With feedback edges:
822 822  
823 823  [[image:attach:feedback_on.png]]
... ... @@ -826,37 +826,25 @@
826 826  
827 827  [[image:attach:feedback_off.png]]
828 828  
829 -== Fixed Alignment ==
833 +== ==
830 830  
835 +{{id name="fixedAlignment"/}}Fixed AlignmentThe {{code language="none"}}BRANDES_KOEPF{{/code}} node placement algorithm computes several different node placements. One of the placements is chosen by the algorithm, usually the one that takes the least amount of space. With this option, a particular result can be chosen.
831 831  
832 -
833 -{{id name="fixedAlignment"/}}
834 -
835 -The BRANDES_KOEPF node placement algorithm computes several different node placements. One of the placements is chosen by the algorithm, usually the one that takes the least amount of space. With this option, a particular result can be chosen.
836 -
837 837  This option should usually be left alone.
838 838  
839 -== Interactive Reference Point ==
839 +== ==
840 840  
841 +{{id name="interactiveReferencePoint"/}}Interactive Reference PointInteractive layering, crossing minimization, and cycle breaking algorithms use node positions to sort nodes into layers or to determine the order of nodes in each layer. However, it is unclear if for example the top left corners of nodes should be compared, or the bottom left corners — different settings might lead to different results. The interactive reference point determines which part of nodes is used to compare their positions. It provides the following settings:
841 841  
842 -
843 -{{id name="interactiveReferencePoint"/}}
844 -
845 -Interactive layering, crossing minimization, and cycle breaking algorithms use node positions to sort nodes into layers or to determine the order of nodes in each layer. However, it is unclear if for example the top left corners of nodes should be compared, or the bottom left corners — different settings might lead to different results. The interactive reference point determines which part of nodes is used to compare their positions. It provides the following settings:
846 -
847 -* TOP_LEFT
843 +* {{code language="none"}}TOP_LEFT{{/code}}
848 848  The top left corner of a node is taken as the reference point.
849 -* CENTER
845 +* {{code language="none"}}CENTER{{/code}}
850 850  The center of a node is taken as the reference point.
851 851  
852 -== Layer Constraint ==
848 +== ==
853 853  
850 +{{id name="layerConstraint"/}}Layer ConstraintThe layer a node is placed in is usually computed by the layer assignment algorithms. However, sometimes certain nodes need to be placed in the first or in the last layer (for example, nodes that represent inputs from the outside). The layer constraint option can be set on such nodes to do just that.
854 854  
855 -
856 -{{id name="layerConstraint"/}}
857 -
858 -The layer a node is placed in is usually computed by the layer assignment algorithms. However, sometimes certain nodes need to be placed in the first or in the last layer (for example, nodes that represent inputs from the outside). The layer constraint option can be set on such nodes to do just that.
859 -
860 860  [[image:attach:layer_constraints.png]]
861 861  
862 862  {{note}}
... ... @@ -863,12 +863,10 @@
863 863  This option can also be set to {{code language="none"}}FIRST_SEPARATE{{/code}} and {{code language="none"}}LAST_SEPARATE{{/code}}. These are for internal use only and should not have been publicly exposed in the first place. Using them can result in layout problems.
864 864  {{/note}}
865 865  
866 -== Linear Segments Deflection Dampening ==
858 +== ==
867 867  
860 +{{id name="deflectionDampening"/}}Linear Segments Deflection Dampening
868 868  
869 -
870 -{{id name="deflectionDampening"/}}
871 -
872 872  {{note}}
873 873  This is a very advanced layout option that you normally shouldn't worry about.
874 874  {{/note}}
... ... @@ -875,82 +875,46 @@
875 875  
876 876  The linear segments node placer can sometimes place nodes in a way that results in unnecessarily large diagrams. This option dampens how much the nodes are moved around. A dampening factor of 1.0 disables dampening and just lets the node placer do what it wants. A more conservative dampening factor of 0.3 (the default) restricts the freedom of the node placer a bit more.
877 877  
878 -== Maximal Iterations ==
868 +== ==
879 879  
870 +{{id name="maximalIterations"/}}Maximal IterationsDelimits the amount of depth-first-search iterations performed by the network simplex layering strategy. Large, highly connected graphs might require a long time to be processed. This property serves as a timeout after which an exception is raised.
880 880  
872 +== ==
881 881  
882 -{{id name="maximalIterations"/}}
874 +{{id name="mergeEdges"/}}Merge EdgesIn the KGraph model, edges can either connect to nodes through ports or directly. In the latter case, KLay Layered will introduce a virtual port for each edge, which results in all edges connecting to the node at different points in the final drawing. If this option is switched on, KLay Layered will only generate up to one input and one output port for each node. The option is set on a parent node and applies to all of its children, but not to the parent node itself.
883 883  
884 -Delimits the amount of depth-first-search iterations performed by the network simplex layering strategy. Large, highly connected graphs might require a long time to be processed. This property serves as a timeout after which an exception is raised.
885 -
886 -== Merge Edges ==
887 -
888 -
889 -
890 -{{id name="mergeEdges"/}}
891 -
892 -In the KGraph model, edges can either connect to nodes through ports or directly. In the latter case, KLay Layered will introduce a virtual port for each edge, which results in all edges connecting to the node at different points in the final drawing. If this option is switched on, KLay Layered will only generate up to one input and one output port for each node. The option is set on a parent node and applies to all of its children, but not to the parent node itself.
893 -
894 894  [[image:attach:merging.png]]
895 895  
896 -== Merge Hierarchy-Crossing Edges ==
878 +== ==
897 897  
880 +{{id name="mergeHierarchyEdges"/}}Merge Hierarchy-Crossing EdgesIf hierarchical layout is active, this option is the hierarchical equivalent to //Merge Edges//. If set to true on a compound node, all hierarchy-crossing edges that start or end inside that compound node are eligible for merging.
898 898  
899 -
900 -{{id name="mergeHierarchyEdges"/}}
901 -
902 -If hierarchical layout is active, this option is the hierarchical equivalent to //Merge Edges//. If set to true on a compound node, all hierarchy-crossing edges that start or end inside that compound node are eligible for merging.
903 -
904 904  [[image:attach:merge_hierarchy_edges.png]]
905 905  
906 -== Node Layering ==
884 +== ==
907 907  
886 +{{id name="nodeLayering"/}}Node LayeringDecides which algorithm is used to compute the layer each node is placed in. We have different algorithms available, with different optimization goals:
908 908  
909 -
910 -{{id name="nodeLayering"/}}
911 -
912 -Decides which algorithm is used to compute the layer each node is placed in. We have different algorithms available, with different optimization goals:
913 -
914 -* NETWORK_SIMPLEX
888 +* {{code language="none"}}NETWORK_SIMPLEX{{/code}}
915 915  This algorithm tries to minimize the length of edges. This is the most computationally intensive algorithm. The number of iterations after which it aborts if it hasn't found a result yet can be set with the [[Maximal Iterations>>doc:||anchor="maximalInterations"]] option.
916 -* LONGEST_PATH
890 +* {{code language="none"}}LONGEST_PATH{{/code}}
917 917  A very simple algorithm that distributes nodes along their longest path to a sink node.
918 -* INTERACTIVE
892 +* {{code language="none"}}INTERACTIVE{{/code}}
919 919  Distributes the nodes into layers by comparing their positions before the layout algorithm was started. The idea is that the relative horizontal order of nodes as it was before layout was applied is not changed. This of course requires valid positions for all nodes to have been set on the input graph before calling the layout algorithm. The interactive node layering algorithm uses the //Interactive Reference Point// option to determine which reference point of nodes are used to compare positions.
920 920  
921 -== Node Placement ==
895 +== ==
922 922  
897 +{{id name="nodePlacement"/}}Node PlacementDecides which algorithm is used to compute the y coordinate of each node. This influences the length of edges, the number of edge bends, and the height of the diagram. We have different algorithms available, with different optimization goals:
923 923  
924 -
925 -{{id name="nodePlacement"/}}
926 -
927 -Decides which algorithm is used to compute the y coordinate of each node. This influences the length of edges, the number of edge bends, and the height of the diagram. We have different algorithms available, with different optimization goals:
928 -
929 -* BRANDES_KOEPF
899 +* {{code language="none"}}BRANDES_KOEPF{{/code}}
930 930  Minimizes the number of edge bends at the expense of diagram size: diagrams drawn with this algorithm are usually higher than diagrams drawn with other algorithms.
931 -* LINEAR_SEGMENTS
901 +* {{code language="none"}}LINEAR_SEGMENTS{{/code}}
932 932  Computes a balanced placement.
933 -* BUCHHEIM_JUENGER_LEIPERT
934 -Also computes a balanced placement, but a little faster.
935 -* SIMPLE
903 +* {{code language="none"}}INTERACTIVE{{/code}}
904 +Tries to keep the preset y coordinates of nodes from the original layout. For dummy nodes, a guess is made to infer their coordinates. Requires the other interactive phase implementations to have run as well.
905 +* {{code language="none"}}SIMPLE{{/code}}
936 936  Minimizes the area at the expense of... well, pretty much everything else.
937 937  
938 -== Port Anchor Offset ==
908 +== ==
939 939  
940 -
941 -
942 -{{id name="portAnchor"/}}
943 -
944 -Since ports have a size, we need a concrete point inside the port that edges should start or end in. In KLay Layered, this is referred to as the //port anchor//. By default, the center of each port is used as its port anchor, but this behavior can be overridden by setting an explicit port anchor.
945 -
946 -In the following example, the port anchor of the left port was moved upwards, while the port anchor of the second port was moved downwards:
947 -
948 -[[image:attach:port_anchors.png]]
949 -
950 -== Thoroughness ==
951 -
952 -
953 -
954 -{{id name="thoroughness"/}}
955 -
956 -There are heuristics in use all over KLay Layered whose results often improve with the number of iterations computed. The thoroughness is a measure for telling KLay Layered to compute more iterations to improve the quality of results, at the expense of performance.
910 +{{id name="thoroughness"/}}ThoroughnessThere are heuristics in use all over KLay Layered whose results often improve with the number of iterations computed. The thoroughness is a measure for telling KLay Layered to compute more iterations to improve the quality of results, at the expense of performance.
edgeSpacingFactor.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +10.2 KB
Content
feedback_off.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +7.1 KB
Content
feedback_on.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +11.4 KB
Content
layer_constraints.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +17.5 KB
Content
merge_hierarchy_edges.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +102.1 KB
Content
merging.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +16.0 KB
Content
port_anchors.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +5.4 KB
Content
Confluence.Code.ConfluencePageClass[0]
Id
... ... @@ -1,1 +1,1 @@
1 -10750901
1 +7111098
URL
... ... @@ -1,1 +1,1 @@
1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/KIELER/pages/10750901/KLay Layered Layout Options
1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/KIELER/pages/7111098/KLay Layered Layout Options