<
From version < 28.1 >
edited by cds
on 2014/04/15 10:57
To version < 48.1 >
edited by Alexander Schulz-Rosengarten
on 2023/07/11 10:33
>
Change comment: Renamed from xwiki:Kieler.Discontinued Projects.Layout Algorithms (KLay).KLay Layered.KLay Layered Layout Options.WebHome

Summary

Details

Page properties
Parent
... ... @@ -1,0 +1,1 @@
1 +Kieler.Discontinued Projects.Layout Algorithms (KLay).KLay Layered.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.cds
1 +XWiki.als
Content
... ... @@ -8,11 +8,11 @@
8 8  
9 9  = Overview =
10 10  
11 -For a general introduction on layout options, see [[the KIML documentation>>doc:KIML Layout Options]]. KLay Layered supports layout options defined by KIML and defines additional custom layout options.
11 +For a general introduction on layout options, see [[the KIML documentation>>doc:KIELER.Discontinued Projects.Infrastructure for Meta Layout (KIML).KIML Layout Options.WebHome]]. KLay Layered supports layout options defined by KIML and defines additional custom layout options.
12 12  
13 13  == Supported KIML Layout Options ==
14 14  
15 -KLay Layered supports the following standard layout options defined by KIML. Note that the default value may be altered (highlighted yellow). These layout options are documented on [[KIML's Layout Options page>>doc:KIML Layout Options]].
15 +KLay Layered supports the following standard layout options defined by KIML. Note that the default value may be altered (highlighted yellow). These layout options are documented on [[KIML's Layout Options page>>doc:KIELER.Discontinued Projects.Infrastructure for Meta Layout (KIML).KIML Layout Options.WebHome]].
16 16  
17 17  |=(((
18 18  Option
... ... @@ -120,7 +120,7 @@
120 120  
121 121  )))
122 122  |(((
123 -Direction
123 +[[Direction>>doc:||anchor="direction"]]
124 124  )))|(((
125 125  de.cau.cs.kieler.direction
126 126  )))|(((
... ... @@ -127,9 +127,8 @@
127 127  Enum
128 128  )))|(((
129 129  Parents
130 -)))|(% class="highlight-yellow" data-highlight-colour="yellow" %)(% class="highlight-yellow" data-highlight-colour="yellow" %)
131 -(((
132 -RIGHT
130 +)))|(((
131 +UNDEFINED
133 133  )))
134 134  |(% colspan="1" %)(% colspan="1" %)
135 135  (((
... ... @@ -157,7 +157,7 @@
157 157  Parents
158 158  )))|(% class="highlight-yellow" data-highlight-colour="yellow" %)(% class="highlight-yellow" data-highlight-colour="yellow" %)
159 159  (((
160 -POLYLINE
159 +ORTHOGONAL
161 161  )))
162 162  |(% colspan="1" %)(% colspan="1" %)
163 163  (((
... ... @@ -280,6 +280,22 @@
280 280  (((
281 281  
282 282  )))
282 +|(% colspan="1" %)(% colspan="1" %)
283 +(((
284 +(% class="confluence-link" %)Port Anchor Offset
285 +)))|(% colspan="1" %)(% colspan="1" %)
286 +(((
287 +de.cau.cs.kieler.klay.layered.portAnchor
288 +)))|(% colspan="1" %)(% colspan="1" %)
289 +(((
290 +Object
291 +)))|(% colspan="1" %)(% colspan="1" %)
292 +(((
293 +Ports
294 +)))|(% colspan="1" %)(% colspan="1" %)
295 +(((
296 +
297 +)))
283 283  |(((
284 284  Port Constraints
285 285  )))|(((
... ... @@ -351,9 +351,9 @@
351 351  )))|(% colspan="1" %)(% colspan="1" %)
352 352  (((
353 353  Nodes
354 -)))|(% colspan="1" %)(% colspan="1" %)
369 +)))|(% class="highlight-yellow" colspan="1" data-highlight-colour="yellow" %)(% class="highlight-yellow" colspan="1" data-highlight-colour="yellow" %)
355 355  (((
356 -
371 +10
357 357  )))
358 358  |(((
359 359  Priority
... ... @@ -464,6 +464,44 @@
464 464  (((
465 465  Dependency
466 466  )))
482 +|(% colspan="1" %)(% colspan="1" %)
483 +(((
484 +[[Add Unnecessary Bendpoints>>doc:||anchor="addUnnecessaryBendpoints"]]
485 +)))|(% colspan="1" %)(% colspan="1" %)
486 +(((
487 +de.cau.cs.kieler.klay.layered.unnecessaryBendpoints
488 +)))|(% colspan="1" %)(% colspan="1" %)
489 +(((
490 +Boolean
491 +)))|(% colspan="1" %)(% colspan="1" %)
492 +(((
493 +Parents
494 +)))|(% colspan="1" %)(% colspan="1" %)
495 +(((
496 +false
497 +)))|(% colspan="1" %)(% colspan="1" %)
498 +(((
499 +
500 +)))
501 +|(% colspan="1" %)(% colspan="1" %)
502 +(((
503 +[[Content Alignment>>doc:||anchor="contentAlignment"]]
504 +)))|(% colspan="1" %)(% colspan="1" %)
505 +(((
506 +de.cau.cs.kieler.klay.layered.contentAlignment
507 +)))|(% colspan="1" %)(% colspan="1" %)
508 +(((
509 +EnumSet
510 +)))|(% colspan="1" %)(% colspan="1" %)
511 +(((
512 +Parents
513 +)))|(% colspan="1" %)(% colspan="1" %)
514 +(((
515 +V_TOP, H_LEFT
516 +)))|(% colspan="1" %)(% colspan="1" %)
517 +(((
518 +
519 +)))
467 467  |(((
468 468  [[Crossing Minimization>>doc:||anchor="crossingMinimization"]]
469 469  )))|(((
... ... @@ -520,7 +520,7 @@
520 520  Parents
521 521  )))|(% colspan="1" %)(% colspan="1" %)
522 522  (((
523 -SMART
576 +ALWAYS_DOWN
524 524  )))|(% colspan="1" %)(% colspan="1" %)
525 525  (((
526 526  
... ... @@ -603,22 +603,22 @@
603 603  )))
604 604  |(% colspan="1" %)(% colspan="1" %)
605 605  (((
606 -[[Maximal Iterations>>doc:||anchor="maximalIterations"]]
659 +[[Linear Segments Deflection Dampening>>doc:||anchor="deflectionDampening"]]
607 607  )))|(% colspan="1" %)(% colspan="1" %)
608 608  (((
609 -de.cau.cs.kieler.klay.layered.nodeLayering
662 +de.cau.cs.kieler.klay.layered.linearSegmentsDeflectionDampening
610 610  )))|(% colspan="1" %)(% colspan="1" %)
611 611  (((
612 -Int
665 +Float
613 613  )))|(% colspan="1" %)(% colspan="1" %)
614 614  (((
615 615  Parents
616 616  )))|(% colspan="1" %)(% colspan="1" %)
617 617  (((
618 -10.000.000
671 +0.3
619 619  )))|(% colspan="1" %)(% colspan="1" %)
620 620  (((
621 -nodeLayering=NETWORK_SIMPLEX
674 +nodePlace=LINEAR_SEGMENTS
622 622  )))
623 623  |(% colspan="1" %)(% colspan="1" %)
624 624  (((
... ... @@ -625,7 +625,7 @@
625 625  [[Merge Edges>>doc:||anchor="mergeEdges"]]
626 626  )))|(% colspan="1" %)(% colspan="1" %)
627 627  (((
628 -de.cau.cs.kieler.klay.layered.mergePorts
681 +de.cau.cs.kieler.klay.layered.mergeEdges
629 629  )))|(% colspan="1" %)(% colspan="1" %)
630 630  (((
631 631  Boolean
... ... @@ -691,25 +691,6 @@
691 691  (((
692 692  
693 693  )))
694 -|(% colspan="1" %)(% colspan="1" %)
695 -(((
696 -[[Port Anchor Offset>>doc:||anchor="portAnchor"]]
697 -)))|(% colspan="1" %)(% colspan="1" %)
698 -(((
699 -de.cau.cs.kieler.klay.layered.portAnchor
700 -)))|(% colspan="1" %)(% colspan="1" %)
701 -(((
702 -Object
703 -)))|(% colspan="1" %)(% colspan="1" %)
704 -(((
705 -Ports
706 -)))|(% colspan="1" %)(% colspan="1" %)
707 -(((
708 -
709 -)))|(% colspan="1" %)(% colspan="1" %)
710 -(((
711 -
712 -)))
713 713  |(((
714 714  [[Thoroughness>>doc:||anchor="thoroughness"]]
715 715  )))|(((
... ... @@ -719,7 +719,7 @@
719 719  )))|(((
720 720  Parents
721 721  )))|(((
722 -7
756 +10
723 723  )))|(% colspan="1" %)(% colspan="1" %)
724 724  (((
725 725  
... ... @@ -727,71 +727,67 @@
727 727  
728 728  = Detailed Documentation =
729 729  
730 -This section explains every layout option in more detail. See [[the KIML documentation>>doc:KIML Layout Options]] for more information on KIML layout options. Those options are only mentioned here if KLay Layered adds some custom behavior.
764 +This section explains every layout option in more detail. See [[the KIML documentation>>doc:KIELER.Discontinued Projects.Infrastructure for Meta Layout (KIML).KIML Layout Options.WebHome]] for more information on KIML layout options. Those options are only mentioned here if KLay Layered adds some custom behavior.
731 731  
732 -== Crossing Minimization ==
766 +== ==
733 733  
768 +{{id name="addUnnecessaryBendpoints"/}}Add Unnecessary BendpointsBy default, KLay Layered tries not to add bendpoints to an edge at positions where the edge doesn't change direction since there's no real bend there. Turning this option on forces such bend points. More specifically, a bend point is added for each edge that spans more than one layer at the point where it crosses a layer. If hierarchy layout is turned on, a bend point is also added whenever the edge crosses a hierarchy boundary.
734 734  
770 +== ==
735 735  
736 -{{id name="crossingMinimization"/}}
772 +{{id name="contentAlignment"/}}Content AlignmentDetermines how the content of compound nodes is to be aligned if the compound node's size exceeds the bounding box of the content (i.e. child nodes). This might be the case if for a compound node the size constraint of {{code language="none"}}MINIMUM_SIZE{{/code}} is set and the minimum width and height are set large enough.
737 737  
738 -Crossing minimization determines the ordering of nodes in each layer, which influences the number of edge crossings. This option switches between one of several algorithms that can be used to minimize crossings. Possible values are:
774 +{{note}}
775 +This option is not tested for external ports with port constraints {{code language="none"}}FIXED_RATIO{{/code}} or {{code language="none"}}FIXED_POS{{/code}}.
776 +{{/note}}
739 739  
740 -* LAYER_SWEEP
778 +== ==
779 +
780 +{{id name="crossingMinimization"/}}Crossing MinimizationCrossing minimization determines the ordering of nodes in each layer, which influences the number of edge crossings. This option switches between one of several algorithms that can be used to minimize crossings. Possible values are:
781 +
782 +* {{code language="none"}}LAYER_SWEEP{{/code}}
741 741  The layer sweep algorithm iterates multiple times over the layers, trying to find node orderings that minimize the number of crossings. The algorithm uses randomization to increase the odds of finding a good result. To improve its results, consider increasing the //Thoroughness// option, which influences the number of iterations done. The //Randomization// seed also influences results.
742 -* INTERACTIVE
784 +* {{code language="none"}}INTERACTIVE{{/code}}
743 743  Orders the nodes of each layer by comparing their positions before the layout algorithm was started. The idea is that the relative order of nodes as it was before layout was applied is not changed. This of course requires valid positions for all nodes to have been set on the input graph before calling the layout algorithm. The interactive layer sweep algorithm uses the //Interactive Reference Point// option to determine which reference point of nodes are used to compare positions.
744 744  
745 -== Cycle Breaking ==
787 +== ==
746 746  
789 +{{id name="cycleBreaking"/}}Cycle BreakingKLay Layered tries to position nodes in a way that all edges point rightwards. This is not possible if the input graph has cycles. Such cycles have to be broken by reversing as few edges as possible. The reversed edges end up pointing leftwards in the resulting diagram. There are different cycle breaking algorithms available:
747 747  
748 -
749 -{{id name="cycleBreaking"/}}
750 -
751 -KLay Layered tries to position nodes in a way that all edges point rightwards. This is not possible if the input graph has cycles. Such cycles have to be broken by reversing as few edges as possible. The reversed edges end up pointing leftwards in the resulting diagram. There are different cycle breaking algorithms available:
752 -
753 -* GREEDY
791 +* {{code language="none"}}GREEDY{{/code}}
754 754  This algorithm reverses edges greedily. The algorithm tries to avoid edges that have the //Priority// property set.
755 -* INTERACTIVE
793 +* {{code language="none"}}INTERACTIVE{{/code}}
756 756  The interactive algorithm tries to reverse edges that already pointed leftwards in the input graph. This requires node and port coordinates to have been set to sensible values.
757 757  
758 -== Edge Spacing Factor ==
796 +== ==
759 759  
798 +{{id name="direction"/}}DirectionThe layout direction influences where the majority of edges in the final layout will point to. With data flow diagrams, this will usually be to the right. With control flow diagrams, it might be downwards. The layout direction defaults to {{code language="none"}}UNDEFINED{{/code}}. This causes KLay Layered to calculate a layout direction based on the {{code language="none"}}ASPECT_RATIO{{/code}} setting. As of now, if the aspect ratio is >=1 (that is, if the diagram should be wider than it is high), the direction is set to {{code language="none"}}RIGHT{{/code}}. Otherwise, it is set to {{code language="none"}}DOWN{{/code}}.
760 760  
800 +== ==
761 761  
762 -{{id name="edgeSpacingFactor"/}}
802 +{{id name="edgeSpacingFactor"/}}Edge Spacing FactorThe edge spacing factor determines the amount of space between edges, relative to the regular //Spacing// value. The idea is that we don't need as much space between edges as we do between nodes.
763 763  
764 -The edge spacing factor determines the amount of space between edges, relative to the regular //Spacing// value. The idea is that we don't need as much space between edges as we do between nodes.
765 -
766 766  [[image:attach:edgeSpacingFactor.png]]
767 767  
768 -== Edge Label Side Selection ==
806 +== ==
769 769  
808 +{{id name="edgeLabelSideSelection"/}}Edge Label Side SelectionDetermines how KLay Layered places edge labels. The following strategies are available:
770 770  
771 -
772 -{{id name="edgeLabelSideSelection"/}}
773 -
774 -Determines how KLay Layered places edge labels. The following strategies are available:
775 -
776 -* ALWAYS_UP
810 +* {{code language="none"}}ALWAYS_UP{{/code}}
777 777  Always places edge labels above the edge.
778 -* ALWAYS_DOWN
812 +* {{code language="none"}}ALWAYS_DOWN{{/code}}
779 779  Always places edge labels below the edge.
780 -* DIRECTION_UP
814 +* {{code language="none"}}DIRECTION_UP{{/code}}
781 781  Places edge labels above edges pointing right, and below edges pointing left.
782 -* DIRECTION_DOWN
816 +* {{code language="none"}}DIRECTION_DOWN{{/code}}
783 783  Places edge labels below edges pointing right, and above edges pointing left.
784 -* SMART
818 +* {{code language="none"}}SMART{{/code}}
785 785  Uses a heuristic that determines the best edge label placement, also taking the placement of port labels into account.
786 786  
787 -== Feedback Edges ==
821 +== ==
788 788  
823 +{{id name="feedbackEdges"/}}Feedback EdgesFeedback edges are edges that feed the output of a node back to be the input of a previous node. This option controls how feedback edges are routed if port constraints are FREE. This influences how much emphasis is put on feedback edges.
789 789  
790 -
791 -{{id name="feedbackEdges"/}}
792 -
793 -Feedback edges are edges that feed the output of a node back to be the input of a previous node. This option controls how feedback edges are routed if port constraints are FREE. This influences how much emphasis is put on feedback edges.
794 -
795 795  With feedback edges:
796 796  
797 797  [[image:attach:feedback_on.png]]
... ... @@ -800,37 +800,25 @@
800 800  
801 801  [[image:attach:feedback_off.png]]
802 802  
803 -== Fixed Alignment ==
833 +== ==
804 804  
835 +{{id name="fixedAlignment"/}}Fixed AlignmentThe {{code language="none"}}BRANDES_KOEPF{{/code}} node placement algorithm computes several different node placements. One of the placements is chosen by the algorithm, usually the one that takes the least amount of space. With this option, a particular result can be chosen.
805 805  
806 -
807 -{{id name="fixedAlignment"/}}
808 -
809 -The BRANDES_KOEPF node placement algorithm computes several different node placements. One of the placements is chosen by the algorithm, usually the one that takes the least amount of space. With this option, a particular result can be chosen.
810 -
811 811  This option should usually be left alone.
812 812  
813 -== Interactive Reference Point ==
839 +== ==
814 814  
841 +{{id name="interactiveReferencePoint"/}}Interactive Reference PointInteractive layering, crossing minimization, and cycle breaking algorithms use node positions to sort nodes into layers or to determine the order of nodes in each layer. However, it is unclear if for example the top left corners of nodes should be compared, or the bottom left corners — different settings might lead to different results. The interactive reference point determines which part of nodes is used to compare their positions. It provides the following settings:
815 815  
816 -
817 -{{id name="interactiveReferencePoint"/}}
818 -
819 -Interactive layering, crossing minimization, and cycle breaking algorithms use node positions to sort nodes into layers or to determine the order of nodes in each layer. However, it is unclear if for example the top left corners of nodes should be compared, or the bottom left corners — different settings might lead to different results. The interactive reference point determines which part of nodes is used to compare their positions. It provides the following settings:
820 -
821 -* TOP_LEFT
843 +* {{code language="none"}}TOP_LEFT{{/code}}
822 822  The top left corner of a node is taken as the reference point.
823 -* CENTER
845 +* {{code language="none"}}CENTER{{/code}}
824 824  The center of a node is taken as the reference point.
825 825  
826 -== Layer Constraint ==
848 +== ==
827 827  
850 +{{id name="layerConstraint"/}}Layer ConstraintThe layer a node is placed in is usually computed by the layer assignment algorithms. However, sometimes certain nodes need to be placed in the first or in the last layer (for example, nodes that represent inputs from the outside). The layer constraint option can be set on such nodes to do just that.
828 828  
829 -
830 -{{id name="layerConstraint"/}}
831 -
832 -The layer a node is placed in is usually computed by the layer assignment algorithms. However, sometimes certain nodes need to be placed in the first or in the last layer (for example, nodes that represent inputs from the outside). The layer constraint option can be set on such nodes to do just that.
833 -
834 834  [[image:attach:layer_constraints.png]]
835 835  
836 836  {{note}}
... ... @@ -837,82 +837,56 @@
837 837  This option can also be set to {{code language="none"}}FIRST_SEPARATE{{/code}} and {{code language="none"}}LAST_SEPARATE{{/code}}. These are for internal use only and should not have been publicly exposed in the first place. Using them can result in layout problems.
838 838  {{/note}}
839 839  
840 -== Maximal Iterations ==
858 +== ==
841 841  
860 +{{id name="deflectionDampening"/}}Linear Segments Deflection Dampening
842 842  
862 +{{note}}
863 +This is a very advanced layout option that you normally shouldn't worry about.
864 +{{/note}}
843 843  
844 -{{id name="maximalIterations"/}}
866 +The linear segments node placer can sometimes place nodes in a way that results in unnecessarily large diagrams. This option dampens how much the nodes are moved around. A dampening factor of 1.0 disables dampening and just lets the node placer do what it wants. A more conservative dampening factor of 0.3 (the default) restricts the freedom of the node placer a bit more.
845 845  
846 -Delimits the amount of depth-first-search iterations performed by the network simplex layering strategy. Large, highly connected graphs might require a long time to be processed. This property serves as a timeout after which an exception is raised.
868 +== ==
847 847  
848 -== Merge Edges ==
870 +{{id name="maximalIterations"/}}Maximal IterationsDelimits the amount of depth-first-search iterations performed by the network simplex layering strategy. Large, highly connected graphs might require a long time to be processed. This property serves as a timeout after which an exception is raised.
849 849  
872 +== ==
850 850  
874 +{{id name="mergeEdges"/}}Merge EdgesIn the KGraph model, edges can either connect to nodes through ports or directly. In the latter case, KLay Layered will introduce a virtual port for each edge, which results in all edges connecting to the node at different points in the final drawing. If this option is switched on, KLay Layered will only generate up to one input and one output port for each node. The option is set on a parent node and applies to all of its children, but not to the parent node itself.
851 851  
852 -{{id name="mergeEdges"/}}
853 -
854 -In the KGraph model, edges can either connect to nodes through ports or directly. In the latter case, KLay Layered will introduce a virtual port for each edge, which results in all edges connecting to the node at different points in the final drawing. If this option is switched on, KLay Layered will only generate up to one input and one output port for each node. The option is set on a parent node and applies to all of its children, but not to the parent node itself.
855 -
856 856  [[image:attach:merging.png]]
857 857  
858 -== Merge Hierarchy-Crossing Edges ==
878 +== ==
859 859  
880 +{{id name="mergeHierarchyEdges"/}}Merge Hierarchy-Crossing EdgesIf hierarchical layout is active, this option is the hierarchical equivalent to //Merge Edges//. If set to true on a compound node, all hierarchy-crossing edges that start or end inside that compound node are eligible for merging.
860 860  
861 -
862 -{{id name="mergeHierarchyEdges"/}}
863 -
864 -If hierarchical layout is active, this option is the hierarchical equivalent to //Merge Edges//. If set to true on a compound node, all hierarchy-crossing edges that start or end inside that compound node are eligible for merging.
865 -
866 866  [[image:attach:merge_hierarchy_edges.png]]
867 867  
868 -== Node Layering ==
884 +== ==
869 869  
886 +{{id name="nodeLayering"/}}Node LayeringDecides which algorithm is used to compute the layer each node is placed in. We have different algorithms available, with different optimization goals:
870 870  
871 -
872 -{{id name="nodeLayering"/}}
873 -
874 -Decides which algorithm is used to compute the layer each node is placed in. We have different algorithms available, with different optimization goals:
875 -
876 -* NETWORK_SIMPLEX
888 +* {{code language="none"}}NETWORK_SIMPLEX{{/code}}
877 877  This algorithm tries to minimize the length of edges. This is the most computationally intensive algorithm. The number of iterations after which it aborts if it hasn't found a result yet can be set with the [[Maximal Iterations>>doc:||anchor="maximalInterations"]] option.
878 -* LONGEST_PATH
890 +* {{code language="none"}}LONGEST_PATH{{/code}}
879 879  A very simple algorithm that distributes nodes along their longest path to a sink node.
880 -* INTERACTIVE
892 +* {{code language="none"}}INTERACTIVE{{/code}}
881 881  Distributes the nodes into layers by comparing their positions before the layout algorithm was started. The idea is that the relative horizontal order of nodes as it was before layout was applied is not changed. This of course requires valid positions for all nodes to have been set on the input graph before calling the layout algorithm. The interactive node layering algorithm uses the //Interactive Reference Point// option to determine which reference point of nodes are used to compare positions.
882 882  
883 -== Node Placement ==
895 +== ==
884 884  
897 +{{id name="nodePlacement"/}}Node PlacementDecides which algorithm is used to compute the y coordinate of each node. This influences the length of edges, the number of edge bends, and the height of the diagram. We have different algorithms available, with different optimization goals:
885 885  
886 -
887 -{{id name="nodePlacement"/}}
888 -
889 -Decides which algorithm is used to compute the y coordinate of each node. This influences the length of edges, the number of edge bends, and the height of the diagram. We have different algorithms available, with different optimization goals:
890 -
891 -* BRANDES_KOEPF
899 +* {{code language="none"}}BRANDES_KOEPF{{/code}}
892 892  Minimizes the number of edge bends at the expense of diagram size: diagrams drawn with this algorithm are usually higher than diagrams drawn with other algorithms.
893 -* LINEAR_SEGMENTS
901 +* {{code language="none"}}LINEAR_SEGMENTS{{/code}}
894 894  Computes a balanced placement.
895 -* BUCHHEIM_JUENGER_LEIPERT
896 -Also computes a balanced placement, but a little faster.
897 -* SIMPLE
903 +* {{code language="none"}}INTERACTIVE{{/code}}
904 +Tries to keep the preset y coordinates of nodes from the original layout. For dummy nodes, a guess is made to infer their coordinates. Requires the other interactive phase implementations to have run as well.
905 +* {{code language="none"}}SIMPLE{{/code}}
898 898  Minimizes the area at the expense of... well, pretty much everything else.
899 899  
900 -== Port Anchor Offset ==
908 +== ==
901 901  
902 -
903 -
904 -{{id name="portAnchor"/}}
905 -
906 -Since ports have a size, we need a concrete point inside the port that edges should start or end in. In KLay Layered, this is referred to as the //port anchor//. By default, the center of each port is used as its port anchor, but this behavior can be overridden by setting an explicit port anchor.
907 -
908 -In the following example, the port anchor of the left port was moved upwards, while the port anchor of the second port was moved downwards:
909 -
910 -[[image:attach:port_anchors.png]]
911 -
912 -== Thoroughness ==
913 -
914 -
915 -
916 -{{id name="thoroughness"/}}
917 -
918 -There are heuristics in use all over KLay Layered whose results often improve with the number of iterations computed. The thoroughness is a measure for telling KLay Layered to compute more iterations to improve the quality of results, at the expense of performance.
910 +{{id name="thoroughness"/}}ThoroughnessThere are heuristics in use all over KLay Layered whose results often improve with the number of iterations computed. The thoroughness is a measure for telling KLay Layered to compute more iterations to improve the quality of results, at the expense of performance.
edgeSpacingFactor.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +10.2 KB
Content
feedback_off.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +7.1 KB
Content
feedback_on.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +11.4 KB
Content
layer_constraints.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +17.5 KB
Content
merge_hierarchy_edges.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +102.1 KB
Content
merging.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +16.0 KB
Content
port_anchors.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiGuest
Size
... ... @@ -1,0 +1,1 @@
1 +5.4 KB
Content
Confluence.Code.ConfluencePageClass[0]
Id
... ... @@ -1,1 +1,1 @@
1 -9470297
1 +7111098
URL
... ... @@ -1,1 +1,1 @@
1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/KIELER/pages/9470297/KLay Layered Layout Options
1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/KIELER/pages/7111098/KLay Layered Layout Options