Wiki source code of SCCharts Development

Version 10.1 by ssm on 2016/04/21 16:56

Show last authors
1 {{layout}}
2 {{layout-section ac:type="single"}}
3 {{layout-cell}}
4
5
6 This is a light-weight tutorial for developing additions for SCCharts in KIELER. It will use Eclipse, EMF, and Xtend and therefore, finishing the corresponding tutorials could prove useful. However, they are not a strict requirement for this tutorial.
7
8 = Preliminaries =
9
10 There's a few things to do before we dive into the tutorial itself. For example, to do Eclipse programming, you will have to get your hands on an Eclipse installation first. Read through the following sections to get ready for the tutorial tasks.
11
12 == Required Software ==
13
14 As you're going to develop for KIELER SCCharts we recommend to use the semantic Oomph setup as described in [[doc:KIELER.Getting Eclipse]] (Oomph Setup). However, you could also install all componentes by yourself. Please consult the other tutorials if you want to do that. You would need to install the Modeling Tools and the Xtext SDK.
15 {{/layout-cell}}
16 {{/layout-section}}
17
18 {{layout-section ac:type="three_equal"}}
19 {{layout-cell}}
20 Additionally, install the** EcoreViz** from the **Ecore Model Visualization** category from the **OpenKieler** update site: [[http:~~/~~/rtsys.informatik.uni-kiel.de/~~~~kieler/updatesite/nightly-openkieler/>>url:http://rtsys.informatik.uni-kiel.de/~~kieler/updatesite/nightly-openkieler/||rel="nofollow" shape="rect"]]. For this, choose //Install New Software...// in the //Help// tab.
21
22 Due to the ongoing migration you have to install a workaround for EcoreViz to function. You have to install the KLighD diagram view directly from [[http:~~/~~/rtsys.informatik.uni-kiel.de/~~~~kieler/updatesite/release_pragmatics_2016-02/>>url:http://rtsys.informatik.uni-kiel.de/~~kieler/updatesite/release_pragmatics_2016-02/||shape="rect"]]. Select the features
23
24 * KIELER Lightweight Diagrams - Developer Resources and
25 * KIELER Lightweight Diagrams Generic Diagram View.
26
27 (This step should be obsolete in the near future.)
28 {{/layout-cell}}
29
30 {{layout-cell}}
31 [[image:attach:InstallEcoreViz.png]]
32 {{/layout-cell}}
33
34 {{layout-cell}}
35 [[image:attach:InstallKLighDFeatures.png]]
36 {{/layout-cell}}
37 {{/layout-section}}
38
39 {{layout-section ac:type="single"}}
40 {{layout-cell}}
41 == Recommended Tutorials ==
42
43 We recommend that you have completed the following tutorials before diving into this one (or at least sweep over them). However, this is not a strict requirement.
44
45 1. [[doc:Eclipse Plug-ins and Extension Points]]
46 1. [[doc:Eclipse Modeling Framework (EMF)]]
47 11. This tutorial needs the turingmachine.ecore and the controller you've implemented in the EMF tutorial. If you did not complete the EMF tutorial, you may download a working turing machine here... (in the future).
48 1. (((
49 (% class="with-breadcrumbs" %)
50 [[Xtend 2 - Model Transformations>>url:http://rtsys.informatik.uni-kiel.de/confluence/display/TUT/Xtend+2+-+Model+Transformations||shape="rect"]]
51 )))
52
53 == Helpful Tutorials ==
54
55 When developing within the KIELER semantics team, you will most likely be confronted with Xtext and [[doc:KIELER.Lightweight Diagrams (KLighD)]]. The following tutorials may be helpful but not required for this tutorial.
56
57 1. [[doc:Xtext 2 - Creating a Grammar from Scratch]]
58 1. [[doc:Lightweight Diagrams (KLighD)]]
59
60 == Finding Documentation ==
61
62 You can find additional documentation to the aforementioned topics in the corresponding tutorials. If you get stuck with a particular topic, please consult that tutorial. For SCCharts, you should read the SCCharts confluence page in our wiki: [[doc:KIELER.SCCharts]]
63
64 As usual, documentation often gets obsolete or wrong if not maintained regularly, so please, if you find missing, misleading, or outdated information, please let us know.
65
66 Additionally, the following list will give a short overview over the most important publications:
67
68 * (% style="color: rgb(0,0,0);" %)**Main paper:**
69 Reinhard von Hanxleden and Björn Duderstadt and Christian Motika and Steven Smyth and Michael Mendler and Joaquín Aguado and Stephen Mercer and Owen O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. In (% class="cmti-10" %)Proc. ACM SIGPLAN Conference on Programming Language Design(%%) (% class="cmti-10" %)and Implementation (PLDI’14)(%%), Edinburgh, UK, June 2014. ACM. (%%)[[pdf>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/downloads/papers/pldi14.pdf||shape="rect"]](% style="color: rgb(0,0,0);" %), (%%)[[talk>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/downloads/talks/pldi14-talk.pdf||shape="rect"]](% style="color: rgb(0,0,0);" %), (%%)[[bib>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/cgi-bin/bibcgi.cgi?key=vonHanxledenDM+14||shape="rect"]]
70 * **SLIC Compilation:**
71 (% style="color: rgb(0,0,0);" %)Christian Motika and Steven Smyth and Reinhard von Hanxleden. Compiling SCCharts—A Case-Study on Interactive Model-Based Compilation. In (% class="cmti-10" %)Proceedings of(%%) (% class="cmti-10" %)the 6th International Symposium on Leveraging Applications of Formal(%%) (% class="cmti-10" %)Methods, Verification and Validation (ISoLA 2014)(%%), volume 8802 of (% class="cmti-10" %)LNCS(%%), page 443–462, Corfu, Greece, October 2014. The (%%)[[original publication>>url:http://dx.doi.org/10.1007/978-3-662-45234-9||shape="rect"]](% style="color: rgb(0,0,0);" %) is available at (%%)[[http:~~/~~/link.springer.com>>url:http://link.springer.com/||shape="rect"]](% style="color: rgb(0,0,0);" %). (%%)[[pdf>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/downloads/papers/isola14.pdf||shape="rect"]](% style="color: rgb(0,0,0);" %), (%%)[[bib>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/cgi-bin/bibcgi.cgi?key=MotikaSvH14||shape="rect"]]
72 * **Theoretical Foundations:**
73 (% style="color: rgb(0,0,0);" %)Reinhard von Hanxleden and Michael Mendler and Joaquín Aguado and Björn Duderstadt and Insa Fuhrmann and Christian Motika and Stephen Mercer and Owen O’Brien and Partha Roop. Sequentially Constructive Concurrency—A Conservative Extension of the Synchronous Model of Computation. (% class="cmti-10" %)ACM Transactions on Embedded Computing(%%) (% class="cmti-10" %)Systems, Special Issue on Applications of Concurrency to System Design(%%), 13(4s):144:1–144:26, July 2014. (%%)[[pdf>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/downloads/papers/tecs14.pdf||shape="rect"]](% style="color: rgb(0,0,0);" %), (%%)[[bib>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/cgi-bin/bibcgi.cgi?key=vonHanxledenMA+14||shape="rect"]]
74 * **Overview and High-Level Transformations in Detail:**
75 (% style="color: rgb(0,0,0);" %)Reinhard von Hanxleden and Björn Duderstadt and Christian Motika and Steven Smyth and Michael Mendler and Joaquín Aguado and Stephen Mercer and Owen O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. Technical Report 1311, Christian-Albrechts-Universität zu Kiel, Department of Computer Science, December 2013. ISSN 2192-6247. (%%)[[pdf>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/downloads/papers/report-1311.pdf||shape="rect"]](% style="color: rgb(0,0,0);" %), (%%)[[bib>>url:http://rtsys.informatik.uni-kiel.de/~~biblio/cgi-bin/bibcgi.cgi?key=vonHanxledenDM+13b||shape="rect"]]
76 {{/layout-cell}}
77 {{/layout-section}}
78
79 {{layout-section ac:type="two_right_sidebar"}}
80 {{layout-cell}}
81 = The SCCharts Metamodel =
82
83 Navigate to the {{code language="none"}}models{{/code}} folder of the plugin {{code language="none"}}de.cau.cs.kieler.sccharts{{/code}}. Here, open the {{code language="none"}}sccharts.ecore{{/code}} and right-click on the {{code language="none"}}sccharts.ecore{{/code}} file and select //Visualize Ecore Model//. Since you also installed **EcoreViz** from the OpenKieler Suite, you should now see a graphical representation of the SCCharts metamodel. Every SCChart will be a model of this metamodel.
84
85 Try to understand most parts of the metamodel. You don't have to understand every detail but you should get the idea.
86
87 ==== Model Task ====
88
89 1. Answer the following questions
90 11. Name the class of the root element of an SCChart
91 11. How do you describe a superstate in the model?
92 11. What is a valued object?
93 11. How do you get the type of an interface variable?
94 11. Outline the relationship between states, regions, transitions, and valued objects
95 11. What other metamodels are needed for the SCCharts metamodel and write down which one is needed for what?
96 1. Write down (on paper, text editor, etc) how the following SCChart models look like
97 11. Open the wiki page that explains the [[doc:KIELER.Textual SCCharts Language SCT]].
98 11. Search the //SCChart, Initial State, State, Transition and Immediate Transition //example and ...
99 111. write down (on paper or text editor, etc) how the model of that SCChart looks like.
100 111. The user now marks C as final. What has to be changed in the model? What semantic problem do you see?
101 11. Now, navigate to the //Super State: Strong Abort Transition //example. Write down (on paper) how the model of that SCCharts looks like.
102 11. And finally a more sophisticated model: Write down the model of ABO (from [[doc:KIELER.Examples]]).
103
104
105
106 {{info title="KLighD Screenshots"}}
107 By the way: You can //right-click// on the Diagram View surface to select //Save as image...// to create a screenshot!
108 {{/info}}
109 {{/layout-cell}}
110
111 {{layout-cell}}
112
113
114
115
116 [[image:attach:sccharts_metamodel.png]]
117
118
119
120
121
122
123
124
125
126 [[image:attach:KLighDSaveAsImage.png]]
127 {{/layout-cell}}
128 {{/layout-section}}
129
130 {{layout-section ac:type="single"}}
131 {{layout-cell}}
132
133
134
135 {{/layout-cell}}
136 {{/layout-section}}
137
138 {{layout-section ac:type="single"}}
139 {{layout-cell}}
140
141 {{/layout-cell}}
142 {{/layout-section}}
143
144 {{layout-section ac:type="single"}}
145 {{layout-cell}}
146 = Creating SCCharts Models Programmatically =
147
148 == Creating a Test Project ==
149
150 We need a project for testing. Do the following:
151
152 1. Create a new empty //Plug-In Project//.
153 1. Add the project that contains the sccharts metamodel as a dependency of your new project through the //Plugin Manifest Editor//.
154 1. Create a simple Java class that implements a main method. Hint: In a new Java class, simply type main and hit Ctrl+Space. Eclipse content assist will create the method for you.
155
156 == Creating a Model ==
157
158 To create a model programmatically you cannot directly use the Java classes generated for the model. Instead, the main package contains interfaces for all of your model object classes. The {{code language="none"}}impl{{/code}} package contains the actual implementation and the {{code language="none"}}util{{/code}} package contains some helper classes. Do not instantiate objects directly by manually calling {{code language="none"}}new{{/code}}. EMF generates a Factory to create new objects. The factory itself uses the singleton pattern to get access to it:
159
160 {{code language="java"}}
161 SCChartsFactory sccFactory = SCChartsFactory.eINSTANCE;
162 State state = sccFactory .createState();
163 Transition transition = sccFactory .createTransition();
164 {{/code}}
165
166 Important: The SCCharts grammar is build on top of several other grammars. Therefore, not all language objects can be found in the SCCharts factory. For example, all expression elements are part of the KExpressions grammar and hence, have their own factory. If you need other factories, don't forget to add the corresponding plugin to your plugin dependency list.
167
168 {{code language="java"}}
169 KExpressionsFactory kFactory = KExpressionsFactory.eINSTANCE;
170 BooleanValue boolValue = kFactory.createBooleanValue();
171 {{/code}}
172
173 For all simple attributes, there are getter and setter methods:
174
175 {{code language="java"}}
176 state.setId("Root");
177 boolValue.setValue(true);
178 {{/code}}
179
180 Simple references (multiplicity of 1) also have getters and setters:
181
182 {{code language="java"}}
183 transition.setTrigger(boolValue);
184 {{/code}}
185
186 List references (multiplicity of > 1) have only a list getter, which is used to manipulate the list:
187
188 {{code language="java"}}
189 state.outgoingTransitions.add(transition);
190 {{/code}}
191
192 == Saving a Model ==
193
194 EMF uses the [[Eclipse Resource concept>>url:http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/resInt.htm?cp=2_0_10||rel="nofollow" shape="rect" class="external-link"]] to save models to files and load models from files. It can use different //Resource Factories// that determine how exactly models are serialized. We will use the [[XMIResourceFactoryImpl>>url:http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/xmi/impl/XMIResourceFactoryImpl.html||rel="nofollow" shape="rect" class="external-link"]] to save our models to XML files:
195
196 1. Add a dependency to the {{code language="none"}}org.eclipse.emf.ecore.xmi{{/code}} plug-in.
197 1. (((
198 Use something like the following code to save the model from above:
199
200 {{code language="java"}}
201 // Create a resource set.
202 ResourceSet resourceSet = new ResourceSetImpl();
203
204 // Register the default resource factory -- only needed for stand-alone!
205 // this tells EMF to use XML to save the model
206 resourceSet.getResourceFactoryRegistry().getExtensionToFactoryMap().put(
207 Resource.Factory.Registry.DEFAULT_EXTENSION, new SCTResourceFactoryImpl());
208 // Get the URI of the model file.
209 URI fileURI = URI.createFileURI(new File("myABO.sct").getAbsolutePath());
210
211 // Create a resource for this file.
212 Resource resource = resourceSet.createResource(fileURI);
213
214 // Add the model objects to the contents.
215 resource.getContents().add(myModel);
216
217 // Save the contents of the resource to the file system.
218 try
219 {
220 resource.save(Collections.EMPTY_MAP); // the map can pass special saving options to the operation
221 } catch (IOException e) {
222 /* error handling */
223 }
224 {{/code}}
225 )))
226
227 ==== Model Creation Task ====
228
229 With these information out of the way, on we go to some model creation:
230
231 1. Programmatically create a valid model of ABO in the {{code language="none"}}main(){{/code}} method.
232 1. Run the {{code language="none"}}main(){{/code}} method by right-clicking its class and selecting //Run as// -> //Java Application//. Note that this runs your {{code language="none"}}main(){{/code}} method as a simple Java program, not a complete Eclipse application. EMF models can be used in any simple Java context, not just in Eclipse applications.
233 1. Execute the main method.
234 1. Inspect your SCT file.
235 1. Start your SCChart Editor Eclipse instance and load your SCT file. KLighD should now be able to visualize your ABO correctly.
236
237 = Transforming SCCharts =
238
239 Transformations from one model to another may be performed within the same metamodel or from metamodel to a different metamodel. Both methods are used in KIELER and in principle they do not really differ in implementation. Nevertheless, if working within the same metamodel you should keep in mind that you're potentially changing the actual model instead of changing another instance (after copying). Both is possible. Just make sure that you know what you're doing.
240
241 Now, you're going to transform the normalized form of HandleA from ABO to an SCG. The Sequentially Constructive Graph is a control-flow graph which can be seen as another representation of the same program. The SCG of the normalized version of ABO's HandleA is depicted on the right.
242
243 |(((
244 {{code}}
245 scchart ABO_norm_HandleA {
246 input output bool A;
247 input output bool B;
248 output bool O1;
249 output bool O2;
250 region HandleA:
251 initial state WaitA
252 --> _S immediate with A
253 --> _Pause immediate;
254 final state DoneA;
255 state _S
256 --> _S2 immediate with / B = true;
257 state _S2
258 --> DoneA immediate with / O1 = true;
259 state _Pause
260 --> _Depth;
261 state _Depth
262 --> _S immediate with A
263 --> _Pause immediate;
264 }
265 {{/code}}
266 )))|(((
267 [[image:attach:abo_norm_HandleA.png]]
268 )))|(% colspan="1" %)(% colspan="1" %)
269 (((
270 [[image:attach:abo_scg_HandleA.png]]
271 )))
272
273 The next figure depicts the direct mapping from normalized SCCharts to their corresponding SCG.
274
275 [[image:attach:sccharts-scg.png]]
276
277 Inspect the metamodel of the SCGs in plugin de.cau.cs.kieler.scg. SCGs are used for analyses and optimization and include a lot of additional elements. However, for this tutorial it should be sufficient to look at the SCGraph class, its nodes attribute, the important node classes and the controlflow class. Important nodes for this SCG are entry, exit, assignment, conditional,
278
279 ==== Transformation Task ====
280
281 Write a transformation that transforms your normalized version of ABO's HandleA into its corresponding SCG.
282
283 1. (((
284 **Writing a Model Transformation**
285
286 This time we want you to integrate your transformation into your SCCharts Editor instance. Therefore,...
287 (% style="color: rgb(51,51,51);line-height: 1.66667;" %)\\
288
289 1. Add a new package 
290
291 {{code language="none"}}
292 <project>.transformations
293 {{/code}} to your project.
294 1. Add an //Xtend Class// to the new package.
295 1. If you notice that your new class is marked with an error marker because of a missing dependency of the new plug-in project to 
296
297 {{code language="none"}}
298 org.eclipse.xtext.xbase.lib, 
299 {{/code}}you can hover over the error with your mouse and have Eclipse add all libraries required by Xtend to your project.
300 1.
301
302 Define an entry method for the transformation that takes an SCChart program instance as an argument and returns an SCG {{code language="none"}}Program{{/code}}. You can use the following (incomplete) method as a starting point:
303
304 (((
305 (% class="syntaxhighlighter sh-confluence nogutter java" %)
306 (((
307
308
309 |(((
310 (% class="container" title="Hint: double-click to select code" %)
311 (((
312 (% class="line number1 index0 alt2" %)
313 (((
314 {{code language="none"}}
315 /**
316 {{/code}}
317 )))
318
319 (% class="line number2 index1 alt1" %)
320 (((
321 {{code language="none"}}
322  
323 {{/code}}
324
325 {{code language="none"}}
326 * Transforms a given SCCharts program into an SCG.
327 {{/code}}
328 )))
329
330 (% class="line number3 index2 alt2" %)
331 (((
332 {{code language="none"}}
333  
334 {{/code}}
335
336 {{code language="none"}}
337 *
338 {{/code}}
339 )))
340
341 (% class="line number4 index3 alt1" %)
342 (((
343 {{code language="none"}}
344 */
345 {{/code}}
346 )))
347
348 (% class="line number8 index7 alt1" %)
349 (((
350 {{code language="none"}}
351 def SCGraph transform(State rootState) {
352 {{/code}}
353 )))
354
355 (% class="line number9 index8 alt2" %)
356 (((
357 {{code language="none"}}
358     
359 {{/code}}
360
361 {{code language="none"}}
362 // Create the SCG
363 {{/code}}
364 )))
365
366 (% class="line number10 index9 alt1" %)
367 (((
368 {{code language="none"}}
369     
370 {{/code}}
371
372 {{code language="none"}}
373 val scg = SCGraphFactory::eINSTANCE.createSCGraph()
374 {{/code}}
375 )))
376
377 (% class="line number11 index10 alt2" %)
378 (((
379 {{code language="none"}}
380   
381 {{/code}}
382 )))
383
384 (% class="line number12 index11 alt1" %)
385 (((
386 {{code language="none"}}
387     
388 {{/code}}
389
390 {{code language="none"}}
391 // TODO: Your transformation code
392 {{/code}}
393 )))
394
395 (% class="line number13 index12 alt2" %)
396 (((
397 {{code language="none"}}
398   
399 {{/code}}
400 )))
401
402 (% class="line number14 index13 alt1" %)
403 (((
404 {{code language="none"}}
405     
406 {{/code}}
407
408 {{code language="none"}}
409 // Return the transformed program
410 {{/code}}
411 )))
412
413 (% class="line number15 index14 alt2" %)
414 (((
415 {{code language="none"}}
416     scg
417 {{/code}}
418 )))
419
420 (% class="line number16 index15 alt1" %)
421 (((
422 {{code language="none"}}
423 }
424 {{/code}}
425 )))
426 )))
427 )))
428
429
430 )))
431 )))
432
433 (((
434 (% class="syntaxhighlighter nogutter java" %)
435 (((
436 There's a few points to note here:
437 )))
438 )))
439
440 \\
441
442 1.
443 1*. Lines in Xtend code don't have to and with a semicolon.
444 1*. We have been explicit about the method's return type, but we could have easily omitted it, letting Xtend infer the return type.
445 1*. The keyword 
446
447 {{code language="none"}}
448 val
449 {{/code}} declares a constant, while 
450
451 {{code language="none"}}
452 var
453 {{/code}} declares a variable. Try to make do with constants where possible.
454 1*. The methods you call should be declared as 
455
456 {{code language="none"}}
457 def private
458 {{/code}} since they are implementation details and shouldn't be called by other classes.
459 1*. You may be tempted to add a few global variables that hold things like a global input variable or a pointer to the current state. While you could to that, 
460
461 {{code language="none"}}
462 def create 
463 {{/code}}methods might offer a better alternative...
464 \\
465 1. Replace the TODO with an transformation code that takes an extended BF program and transforms it into an semantically equivalent BF program that only uses standard BF instructions. 
466 HINT: Some of the extended BF commands can only be expressed by standard operations if you can write to other cells. Therefore you are allowed to perform side effects on the tape.
467 1. Open the //Plug-In Manifest Editor// and switch to the Runtime tab. Add the package containing your transformation to the list of exported packages. (You may have to check the //Show non-Java packages// option in the //Exported Packages// dialog to see the package.)
468 \\
469 )))
470 1. **Verify your generated SCG**. If you added your transformation correctly, the SCG should be displayed automatically as soon as selected. If your SCG looks like the SCG depicted earlier, then everything is fine.
471 1. Check your SCG semantically. Is there anything you could improve/optimize? 
472 11. Write a second transformation (just as before) and add it to the transformation chain right after the transformation you already added.
473 11. Optimize the given SCG and compare the result with the previous one.
474 11. Make sure that the two SCGs are still semantically identical.
475
476 Congratulations! You finished the SCCharts Development Tutorial. Ask your supervisor for further instructions!
477
478
479 {{/layout-cell}}
480 {{/layout-section}}
481 {{/layout}}