<
From version < 48.1 >
edited by ssm
on 2016/04/22 17:04
To version < 18.1 >
edited by ssm
on 2016/04/21 19:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,7 @@
1 1  {{layout}}
2 2  {{layout-section ac:type="single"}}
3 3  {{layout-cell}}
4 -is is a light-weight tutorial for developing transformations/additions for SCCharts in KIELER. It will use Eclipse, EMF, and Xtend and therefore, finishing the corresponding tutorials could prove useful. However, they are not a strict requirement for this tutorial.
4 +This is a light-weight tutorial for developing additions for SCCharts in KIELER. It will use Eclipse, EMF, and Xtend and therefore, finishing the corresponding tutorials could prove useful. However, they are not a strict requirement for this tutorial.
5 5  
6 6  
7 7  
... ... @@ -13,7 +13,7 @@
13 13  
14 14  == Required Software ==
15 15  
16 -As you're going to develop for KIELER SCCharts, we recommend to use the Oomph setup as described in [[doc:KIELER.Getting Eclipse]] (Oomph Setup). However, you could also install all componentes by yourself. Please consult the other tutorials if you want to do that. You would need to install the Modeling Tools and the Xtext SDK.
16 +As you're going to develop for KIELER SCCharts we recommend to use the semantic Oomph setup as described in [[doc:KIELER.Getting Eclipse]] (Oomph Setup). However, you could also install all componentes by yourself. Please consult the other tutorials if you want to do that. You would need to install the Modeling Tools and the Xtext SDK.
17 17  {{/layout-cell}}
18 18  {{/layout-section}}
19 19  
... ... @@ -102,24 +102,21 @@
102 102  
103 103  ==== Model Task ====
104 104  
105 -* (((
106 -(% style="line-height: 1.42857;" %)Answer the following questions
105 +1. Answer the following questions
106 +11. How do you describe a superstate in the model?
107 +11. Outline the relationship between states, regions, transitions, and valued objects.\\
108 +11. Name the class of the root element of an SCChart.
109 +11. What is a valued object?
110 +11. How do you get the type of an interface variable?
111 +11. What other metamodels are needed for the SCCharts metamodel and write down which one is needed for what?
112 +1. Write down (on paper, text editor, etc) how the following SCChart models look like
113 +11. Open the wiki page that explains the [[doc:KIELER.Textual SCCharts Language SCT]].
114 +11. Search the //SCChart, Initial State, State, Transition and Immediate Transition //example and ...
115 +111. write down (on paper or text editor, etc) how the model of that SCChart looks like.
116 +111. The user now marks C as final. What has to be changed in the model? What semantic problem do you see?
117 +11. Now, navigate to the //Super State: Strong Abort Transition //example. Write down (on paper) how the model of that SCCharts looks like.
118 +11. And finally a more sophisticated model: Write down the model of ABO (from [[doc:KIELER.Examples]]).
107 107  
108 -1. How do you describe a superstate in the model?
109 -1. Outline the relationship between states, regions, transitions, and valued objects.\\
110 -1. Name the class of the root element of an SCChart.
111 -1. What is a valued object?
112 -1. How do you get the type of an interface variable?
113 -1. What other metamodels are needed for the SCCharts metamodel and write down which one is needed for what?
114 -)))
115 -* Write down (on paper, text editor, etc) how the following SCChart models look like
116 -*1. Open the wiki page that explains the [[doc:KIELER.Textual SCCharts Language SCT]].
117 -*1. Search the //SCChart, Initial State, State, Transition and Immediate Transition //example and ...
118 -*11. write down (on paper or text editor, etc) how the model of that SCChart looks like.
119 -*11. The user now marks C as final. What has to be changed in the model? What semantic problem do you see?
120 -*1. Now, navigate to the //Super State: Strong Abort Transition //example. Write down (on paper) how the model of that SCCharts looks like.
121 -*1. And finally a more sophisticated model: Write down the model of ABO (from [[doc:KIELER.Examples]]).
122 -
123 123  
124 124  
125 125  {{info title="KLighD Screenshots"}}
... ... @@ -144,10 +144,10 @@
144 144  
145 145  We need a project for testing. Do the following:
146 146  
147 -* If you used the standard KIELER Oomph installation setup, create a new Working Set named Tutorial in the Package Explorer. Then...
148 -* Create a new empty //Plug-In Project//.
149 -* Add the project that contains the sccharts metamodel as a dependency of your new project through the //Plugin Manifest Editor//.
150 -* Create a simple Java class that implements a main method. Hint: In a new Java class, simply type main and hit Ctrl+Space. Eclipse content assist will create the method for you.
144 +1. If you used the standard KIELER Oomph installation setup, create a new Working Set named Tutorial in the Package Explorer. Then...
145 +1. Create a new empty //Plug-In Project//.
146 +1. Add the project that contains the sccharts metamodel as a dependency of your new project through the //Plugin Manifest Editor//.
147 +1. Create a simple Java class that implements a main method. Hint: In a new Java class, simply type main and hit Ctrl+Space. Eclipse content assist will create the method for you.
151 151  
152 152  == Creating a Model ==
153 153  
... ... @@ -155,8 +155,8 @@
155 155  
156 156  {{code language="java"}}
157 157  SCChartsFactory sccFactory = SCChartsFactory.eINSTANCE;
158 -State state = sccFactory.createState();
159 -Transition transition = sccFactory.createTransition();
155 +State state = sccFactory .createState();
156 +Transition transition = sccFactory .createTransition();
160 160  {{/code}}
161 161  
162 162  Important: The SCCharts grammar is build on top of several other grammars. Therefore, not all language objects can be found in the SCCharts factory. For example, all expression elements are part of the KExpressions grammar and hence, have their own factory. If you need other factories, don't forget to add the corresponding plugin to your plugin dependency list.
... ... @@ -169,7 +169,7 @@
169 169  For all simple attributes, there are getter and setter methods:
170 170  
171 171  {{code language="java"}}
172 -state.setId("Init");
169 +state.setId("Root");
173 173  boolValue.setValue(true);
174 174  {{/code}}
175 175  
... ... @@ -193,14 +193,8 @@
193 193  
194 194  EMF uses the [[Eclipse Resource concept>>url:http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/resInt.htm?cp=2_0_10||rel="nofollow" shape="rect" class="external-link"]] to save models to files and load models from files. It can use different //Resource Factories// that determine how exactly models are serialized. We will use the [[XMIResourceFactoryImpl>>url:http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/xmi/impl/XMIResourceFactoryImpl.html||rel="nofollow" shape="rect" class="external-link"]] to save our models to XML files:
195 195  
196 -* (((
197 -Add a dependency to the {{code language="none"}}com.google.inject, org.eclipse.core.resources, {{/code}}and{{code language="none"}} de.cau.cs.kieler.sccharts.text{{/code}} plug-ins.
198 -
199 -{{info title="Additional Dependencies"}}
200 -Don't worry. You will be experienced enough to add mandatory dependencies quickly in the future. However, for now just add the dependencies to proceed with the tutorial.
201 -{{/info}}
202 -)))
203 -* (((
193 +1. Add a dependency to the {{code language="none"}}org.eclipse.emf.ecore.xmi{{/code}} plug-in.
194 +1. (((
204 204  Use something like the following code to save the model from above:
205 205  
206 206  {{code language="java"}}
... ... @@ -207,10 +207,10 @@
207 207  // Create a resource set.
208 208  ResourceSet resourceSet = new ResourceSetImpl();
209 209  
210 -// Register the resource factory -- only needed for stand-alone!
211 -SctStandaloneSetup.doSetup();
212 -
213 - 
201 +// Register the default resource factory -- only needed for stand-alone!
202 +// this tells EMF to use XML to save the model
203 +resourceSet.getResourceFactoryRegistry().getExtensionToFactoryMap().put(
204 + Resource.Factory.Registry.DEFAULT_EXTENSION, new SCTResourceFactoryImpl());
214 214  // Get the URI of the model file.
215 215  URI fileURI = URI.createFileURI(new File("myABO.sct").getAbsolutePath());
216 216  
... ... @@ -228,288 +228,270 @@
228 228   /* error handling */
229 229  }
230 230  {{/code}}
231 -
232 -{{info title="File Extensions"}}
233 -File extensions are important! They define the parser/serializer that EMF uses. Always use the file extension that is defined for a particular model.
234 -{{/info}}
235 235  )))
236 -{{/layout-cell}}
237 -{{/layout-section}}
238 238  
239 -{{layout-section ac:type="two_right_sidebar"}}
240 -{{layout-cell}}
241 241  ==== Model Creation Task ====
242 242  
243 -You are now equipped with the fundamentals you need to create models programmatically. Let's try it:
226 +With these information out of the way, on we go to some model creation:
244 244  
245 -* (% style="line-height: 1.42857;" %)The code fragments listed above do not suffice to create a grammatically correct model. Try to generate a model that corresponds with the serialized model listed on the right side.
246 -*1. (% style="line-height: 1.42857;" %)Run the {{code language="none"}}main(){{/code}} method by right-clicking its class and selecting //Run as// -> //Java Application//. Note that this runs your {{code language="none"}}main(){{/code}} method as a simple Java program, not a complete Eclipse application. EMF models can be used in any simple Java context, not just in Eclipse applications.
247 -*1. Execute the main method.
248 -*1. (((
249 -(% style="line-height: 1.42857;" %)Inspect your SCT file. (Press F5 to refresh your file view.)
250 -
251 -{{note title="Kext Warning"}}
252 -It is possible that kext generates a Null Pointer Exception when you save your model this way. This is a known issue. We're working on it. Just ignore it for now.
253 -{{/note}}
254 -)))
255 -* Now, create a new Java class and proceed as before to generate a model of ABO in the {{code language="none"}}main(){{/code}} method.
256 -* (% style="line-height: 1.42857;" %)Start your SCChart Editor Eclipse instance and load your SCT file. KLighD should now be able to visualize your ABO correctly.(%%)\\
257 -*1. For this, open tab //Run// and select// Run Configurations...//
258 -*1. Create a new //Eclipse Application// and name it appropriately.
259 -*1. As product select {{code language="none"}}de.cau.cs.kieler.core.product.product{{/code}}.
260 -*1. Click //Run// (or //Debug// if you opened// Debug Configuration...//)
261 -*1. Create a new project and add you generated model.
262 -
263 -
228 +1. Programmatically create a valid model of ABO in the {{code language="none"}}main(){{/code}} method.
229 +1. Run the {{code language="none"}}main(){{/code}} method by right-clicking its class and selecting //Run as// -> //Java Application//. Note that this runs your {{code language="none"}}main(){{/code}} method as a simple Java program, not a complete Eclipse application. EMF models can be used in any simple Java context, not just in Eclipse applications.
230 +1. Execute the main method.
231 +1. Inspect your SCT file.
232 +1. Start your SCChart Editor Eclipse instance and load your SCT file. KLighD should now be able to visualize your ABO correctly.
264 264  {{/layout-cell}}
234 +{{/layout-section}}
265 265  
236 +{{layout-section ac:type="single"}}
266 266  {{layout-cell}}
267 -{{code language="java" title="Root.sct"}}
268 -scchart Root {
269 - initial state Init
270 - --> Init with true;
271 -}
272 -{{/code}}
273 -
274 -[[image:attach:RunConfiguration.png]]
238 +
275 275  {{/layout-cell}}
276 276  {{/layout-section}}
277 277  
278 -{{layout-section ac:type="two_right_sidebar"}}
242 +{{layout-section ac:type="single"}}
279 279  {{layout-cell}}
280 -= Model-to-Model Transformations with KiCo =
244 += Transforming SCCharts =
281 281  
282 -You can use the [[Kieler Compiler>>url:http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Kieler+Compiler||shape="rect"]] (KiCo) to handle all the model input/output tasks and concentrate on the actual transformation. If you executed the **Model Creation Task correctly**, you should now have a complete running SCT Editor instance that looks like the one on the right. You should see the //KIELER Compiler Selection// n the lower right part of the working space. Here you can select specific transformations that will be applied to the actual model. Simply select a transformation to test it.
246 +Transformations from one model to another may be performed within the same metamodel or from metamodel to a different metamodel. Both methods are used in KIELER and in principle they do not really differ in implementation. Nevertheless, if working within the same metamodel you should keep in mind that you're potentially changing the actual model instead of changing another instance (after copying). Both is possible. Just make sure that you know what you're doing.
283 283  
284 -== Creating a new Transformation ==
248 +Now, you're going to transform the normalized form of HandleA from ABO to an SCG. The Sequentially Constructive Graph is a control-flow graph which can be seen as another representation of the same program. The SCG of the normalized version of ABO's HandleA is depicted on the right.
285 285  
286 -Now, you're going to write your own transformation with **Xtend** *drumroll*, a programming language that looks very similar to Java, but which adds some very convenient features. Xtend code compiles to Java and and was developed using Xtext. In fact, once you gain experience working with Xtend you will probably appreciate the power of Xtext even more. Xtend is particularly useful to browse & modify EMF models. You get the point... we like it. :)
287 -{{/layout-cell}}
250 +|(((
251 +{{code}}
252 +scchart ABO_norm_HandleA {
253 + input output bool A;
254 + input output bool B;
255 + output bool O1;
256 + output bool O2;
257 + region HandleA:
258 + initial state WaitA
259 + --> _S immediate with A
260 + --> _Pause immediate;
261 + final state DoneA;
262 + state _S
263 + --> _S2 immediate with / B = true;
264 + state _S2
265 + --> DoneA immediate with / O1 = true;
266 + state _Pause
267 + --> _Depth;
268 + state _Depth
269 + --> _S immediate with A
270 + --> _Pause immediate;
271 +}
272 +{{/code}}
273 +)))|(((
274 +[[image:attach:abo_norm_HandleA.png]]
275 +)))|(% colspan="1" %)(% colspan="1" %)
276 +(((
277 +[[image:attach:abo_scg_HandleA.png]]
278 +)))
288 288  
289 -{{layout-cell}}
290 -[[image:attach:KielerSCTEditor.png]]
291 -{{/layout-cell}}
292 -{{/layout-section}}
280 +The next figure depicts the direct mapping from normalized SCCharts to their corresponding SCG.
293 293  
294 -{{layout-section ac:type="two_right_sidebar"}}
295 -{{layout-cell}}
296 -==== Transformation Creation Task ====
282 +[[image:attach:sccharts-scg.png]]
297 297  
298 -* Create your first transformation...
299 -*1. Create a new project within your tutorial working set as before.
300 -*1. Add plugin dependencies to {{code language="none"}}de.cau.cs.kieler.kico{{/code}} and {{code language="none"}}de.cau.cs.kieler.sccharts{{/code}}.
301 -*1. Create a new //Xtend class// in you package and name it "DoubleStates" and use {{code language="none"}}AbstractProductionTransformation{{/code}} as superclass.
302 -*1. Here, you can automatically add the missing Xtend files by using the quickfix //Add Xtend lib to class path. //Alternatively you can simply add {{code language="none"}}com.google.guava{{/code}}, {{code language="none"}}org.eclipse.xtext.xbase.lib{{/code}}, {{code language="none"}}org.eclipse.xtend.lib{{/code}}, and {{code language="none"}}org.eclipse.xtend.lib.macro{{/code}} to you plugin dependencies.
303 -*1. Click on //Add unimplemented methods//.
304 -*1. (((
305 -Now, you should have a class similar to the following one.
284 +Inspect the metamodel of the SCGs in plugin de.cau.cs.kieler.scg. SCGs are used for analyses and optimization and include a lot of additional elements. However, for this tutorial it should be sufficient to look at the SCGraph class, its nodes attribute, the important node classes and the controlflow class. Important nodes for this SCG are entry, exit, assignment, conditional,
306 306  
307 -{{code language="java"}}
308 -package tutorial.transformation
286 +==== Transformation Task ====
309 309  
310 -import de.cau.cs.kieler.kico.transformation.AbstractProductionTransformation
288 +Write a transformation that transforms your normalized version of ABO's HandleA into its corresponding SCG.
311 311  
312 -class DoubleStates extends AbstractProductionTransformation {
313 -
314 - override getProducedFeatureId() {
315 - throw new UnsupportedOperationException("TODO: auto-generated method stub")
316 - }
317 -
318 - override getId() {
319 - throw new UnsupportedOperationException("TODO: auto-generated method stub")
320 - }
321 -
322 -}
323 -{{/code}}
290 +1. (((
291 +**Writing a Model Transformation**
324 324  
325 -{{info title="Xtend Infos"}}
326 -* Lines in Xtend code don't have to and with a semicolon.
327 -* We have been explicit about the method's return type, but we could have easily omitted it, letting Xtend infer the return type.
328 -* The keyword {{code language="none"}}val{{/code}} declares a constant, while {{code language="none"}}var{{/code}} declares a variable. Try to make do with constants where possible.
329 -* The methods you call should be declared as {{code language="none"}}def private{{/code}} since they are implementation details and shouldn't be called by other classes.
330 -* You may be tempted to add a few global variables that hold things like a global input variable or a pointer to the current state. While you could to that, {{code language="none"}}def create {{/code}}methods might offer a better alternative...
331 -{{/info}}
332 -)))
333 -* (((
334 -As you can see, it is mandatory to add an id for the transformation and another id of the feature that this transformation produces. Name your transformation **tutorial.doubleStates **and the id of feature you want to produce is **sccharts.doubleStates**.
293 +This time we want you to integrate your transformation into your SCCharts Editor instance. Therefore,...
294 +(% style="color: rgb(51,51,51);line-height: 1.66667;" %)\\
335 335  
336 -{{info title="Programming Guidelines"}}
337 -You should really think about some constants here. You can also look at the sccharts transformation and features constants in the sccharts plugin.
338 -{{/info}}
339 -)))
340 -{{/layout-cell}}
296 +1. Add a new package 
341 341  
342 -{{layout-cell}}
343 -
344 -{{/layout-cell}}
345 -{{/layout-section}}
298 +{{code language="none"}}
299 +<project>.transformations
300 +{{/code}} to your project.
301 +1. Add an //Xtend Class// to the new package.
302 +1. If you notice that your new class is marked with an error marker because of a missing dependency of the new plug-in project to 
346 346  
347 -{{layout-section ac:type="two_right_sidebar"}}
348 -{{layout-cell}}
349 -* KiCo must know about the new feature and also about your new transformation. 
350 -*1. Add a new Xtend class with Feature as superclass. Add all unimplemented methods. Also set** sccharts.doubleStates** as Id.
351 -*1. Go to the Extension tab inside your plugin configuration. 
352 -*11. Add a new Extension Point de.cau.cs.kieler.kico.feature. Create a new featureClass and point it to your new feature class.
353 -*11. Also add a new Extension Point de.cau.cs.kieler.kico.transformation. Create a new productionTransformationClass and point it to your transformation class.
354 -*11. Finally, you have to link your transformation to the SCT Editor. Add the Extension point de.cau.cs.kieler.kico.ui.transformation. Create an editor link and fill in the following values:
355 -*111. editor: {{code language="none"}}de.cau.cs.kieler.sccharts.text.sct.Sct{{/code}}
356 -*111. features: sccharts.doubleStates
357 -*111. label: Tutorial Compilation
358 -*111. priority: 101
359 -*111. preferred: (leave it blank)
360 -*1. {{note title="Plugin Tasks"}}In general it is bad to mix non-ui plugins/tasks with ui plugin/tasks because (in the context of KiCo) even if you're not working with an active UI your transformations should work (e.g. a command line compiler). To keep this tutorial simple, you can add this dependency to your plugin nevertheless. However, you shouldn't do this in real products. Always keep the UI separated.{{/note}}If you start your KIELER instance now, you should get a new compilation chain which has only one transformation: yours, which doesn't do anything.
361 -* If you want to rename your feature in the Compiler Selection (without changing its Id), override the {{code language="none"}}getName{{/code}} method and return a new name. Rename your feature appropriately.
362 -{{/layout-cell}}
304 +{{code language="none"}}
305 +org.eclipse.xtext.xbase.lib, 
306 +{{/code}}you can hover over the error with your mouse and have Eclipse add all libraries required by Xtend to your project.
307 +1.
363 363  
364 -{{layout-cell}}
365 -[[image:attach:KielerSCTEditorOwnTransformation.png]]
366 -{{/layout-cell}}
367 -{{/layout-section}}
309 +Define an entry method for the transformation that takes an SCChart program instance as an argument and returns an SCG {{code language="none"}}Program{{/code}}. You can use the following (incomplete) method as a starting point:
368 368  
369 -{{layout-section ac:type="two_right_sidebar"}}
370 -{{layout-cell}}
371 -* Now, fill your transformation with life:
372 -*1. Inside your transformation class, add a new method with the following signature: {{code language="none"}}def State transform(State rootState, KielerCompilerContext context){{/code}}. This transformation will be executed if the feature is selected in the Compiler Selection.
373 -*1. (((
374 -Add thew following body to the function and try to understand the Xtend code. Import unknown class via code assist.
311 +(((
312 +(% class="syntaxhighlighter sh-confluence nogutter java" %)
313 +(((
314 +
375 375  
376 -{{code language="java" title="transform"}}
377 - def State transform(State rootState, KielerCompilerContext context) {
378 - val newState = SCChartsFactory.eINSTANCE.createState => [
379 - id = "ololo"
380 - label = "ololo"
381 - ]
316 +|(((
317 +(% class="container" title="Hint: double-click to select code" %)
318 +(((
319 +(% class="line number1 index0 alt2" %)
320 +(((
321 +{{code language="none"}}
322 +/**
323 +{{/code}}
324 +)))
382 382  
383 - rootState.regions.filter(ControlflowRegion).head.states += newState
326 +(% class="line number2 index1 alt1" %)
327 +(((
328 +{{code language="none"}}
329
330 +{{/code}}
384 384  
385 - rootState
386 - }
332 +{{code language="none"}}
333 +* Transforms a given SCCharts program into an SCG.
387 387  {{/code}}
388 388  )))
389 -*1. When selecting your transformation, the SCChart gets transformed and looks like the version on the right.
390 -* Extend the transformation so that the transition is split up in two and connected via a transient state meaning that the original transformation should point to the new state and a new immediate transformation then points to the original target state. Try it out.
391 -* (((
392 -Xtend supports extensions that can be used to extend the function set of you classes (i.e. models). Add {{code language="none"}}com.google.inject{{/code}} to the dependencies of your plugin. Now, add the following code fragment to the beginning of your class.
393 393  
394 -{{code language="java" title="Code injection"}}
395 - @Inject
396 - extension SCChartsExtension
337 +(% class="line number3 index2 alt2" %)
338 +(((
339 +{{code language="none"}}
340
397 397  {{/code}}
398 398  
399 -There are several Extensions classes within the KIELER project that extend the functionality of various classes. Basically, there are one or more for each metamodel (e.g. SCCharts, SCG, KExpressions, etc). You don't want to invent the wheel again. Use these methods. For example: there is a method that gives you all contained states of a state in a list: {{code language="none"}}getAllContainedStatesList{{/code}}. You can use it on your {{code language="none"}}rootState{{/code}}: {{code language="none"}}rootState.allContainedStatesList{{/code}}. There are also several convenient methods for creating model elements so that you don't have to use the factories directly.
343 +{{code language="none"}}
344 +*
345 +{{/code}}
346 +)))
400 400  
401 -{{note title="Extensions Naming Scheme"}}
402 -Extensions are also just classes. You can add your own to improve the structure of your own projects. In KIELER all extensions end with "Extensions"; except SCChartsExtension for legacy reasons. This will be renamed in after the next snapshot to SCChartsExtensions. So, if you're going to add new extensions to the project, please name them accordingly.
403 -{{/note}}
348 +(% class="line number4 index3 alt1" %)
349 +(((
350 +{{code language="none"}}
351 +*/
352 +{{/code}}
404 404  )))
405 -{{/layout-cell}}
406 406  
407 -{{layout-cell}}
408 -[[image:attach:KielerSCTEditorOwnTransformationOlolo.png]]
409 -{{/layout-cell}}
410 -{{/layout-section}}
355 +(% class="line number8 index7 alt1" %)
356 +(((
357 +{{code language="none"}}
358 +def SCGraph transform(State rootState) {
359 +{{/code}}
360 +)))
411 411  
412 -{{layout-section ac:type="two_right_sidebar"}}
413 -{{layout-cell}}
414 -* Extend your transformation so that it is applied on all states (except the root state). Try your new transformation with ABO. The result should look like the example on the right.
362 +(% class="line number9 index8 alt2" %)
363 +(((
364 +{{code language="none"}}
365 +    
366 +{{/code}}
415 415  
416 -== The existing Compilation Chain ==
368 +{{code language="none"}}
369 +// Create the SCG
370 +{{/code}}
371 +)))
417 417  
418 -Congratulations. You added and executed your own KiCo transformation. Nevertheless, often you want to extend the existing compilation chain. To do this, you proceed as before but instead of creating your own compilation chain, you must modify the existing chains (e.g. the netlist compilation in de.cau.cs.kieler.sccharts.ui). To add a specific transformation at a specific point in the chain, you must tell KiCo what features are required for the transformation. For that you must override the method getRequiredFeatureIds and return a set with all required features.
373 +(% class="line number10 index9 alt1" %)
374 +(((
375 +{{code language="none"}}
376 +    
377 +{{/code}}
419 419  
420 -Also, if you're developing for the master chain, you should obey the package structure. Look at the sccharts plugins. All features, transformation, extensions, the metamodel, ui elements, etc are separated from each other. You should always do the same!
379 +{{code language="none"}}
380 +val scg = SCGraphFactory::eINSTANCE.createSCGraph()
381 +{{/code}}
382 +)))
421 421  
422 -//We will add more content to this subsection in the future...//
384 +(% class="line number11 index10 alt2" %)
385 +(((
386 +{{code language="none"}}
387 +  
388 +{{/code}}
389 +)))
423 423  
424 -
425 -{{/layout-cell}}
391 +(% class="line number12 index11 alt1" %)
392 +(((
393 +{{code language="none"}}
394 +    
395 +{{/code}}
426 426  
427 -{{layout-cell}}
428 -[[image:attach:ABODoubleStates.png]]
397 +{{code language="none"}}
398 +// TODO: Your transformation code
399 +{{/code}}
400 +)))
429 429  
430 -
402 +(% class="line number13 index12 alt2" %)
403 +(((
404 +{{code language="none"}}
405 +  
406 +{{/code}}
407 +)))
431 431  
432 -
409 +(% class="line number14 index13 alt1" %)
410 +(((
411 +{{code language="none"}}
412 +    
413 +{{/code}}
433 433  
434 -
435 -{{/layout-cell}}
436 -{{/layout-section}}
415 +{{code language="none"}}
416 +// Return the transformed program
417 +{{/code}}
418 +)))
437 437  
438 -{{layout-section ac:type="single"}}
439 -{{layout-cell}}
440 -= Model-to-Model Transformations between Metamodels =
420 +(% class="line number15 index14 alt2" %)
421 +(((
422 +{{code language="none"}}
423 +    scg
424 +{{/code}}
425 +)))
441 441  
442 -Transformations from one model to another may be performed within the same metamodel or from metamodel to a different metamodel. Both methods are used in KIELER and in principle they do not really differ in implementation. Nevertheless, if working within the same metamodel you should keep in mind that you're potentially changing the actual model instead of changing another instance (after copying). When transforming to another metamodel, you're always generating a new model. So there is no in-place transformation. Both is possible. Just make sure that you know what you're doing.
443 -
444 -Now, you're going to transform the normalized form of HandleA from ABO to an SCG. The Sequentially Constructive Graph is a control-flow graph which can be seen as another representation of the same program. The SCG of the normalized version of ABO's HandleA is depicted on the right.
445 -
446 -|(((
447 -{{code}}
448 -scchart ABO_norm_HandleA {
449 - input output bool A;
450 - input output bool B;
451 - output bool O1;
452 - output bool O2;
453 - region HandleA:
454 - initial state WaitA
455 - --> _S immediate with A
456 - --> _Pause immediate;
457 - final state DoneA;
458 - state _S
459 - --> _S2 immediate with / B = true;
460 - state _S2
461 - --> DoneA immediate with / O1 = true;
462 - state _Pause
463 - --> _Depth;
464 - state _Depth
465 - --> _S immediate with A
466 - --> _Pause immediate;
427 +(% class="line number16 index15 alt1" %)
428 +(((
429 +{{code language="none"}}
467 467  }
468 468  {{/code}}
469 -)))|(((
470 -[[image:attach:abo_norm_HandleA.png]]
471 -)))|(% colspan="1" %)(% colspan="1" %)
472 -(((
473 -[[image:attach:abo_scg_HandleA.png]]
474 474  )))
475 -{{/layout-cell}}
476 -{{/layout-section}}
433 +)))
434 +)))
477 477  
478 -{{layout-section ac:type="two_equal"}}
479 -{{layout-cell}}
480 -The next figure depicts the direct mapping from normalized SCCharts to their corresponding SCG.
436 +
437 +)))
438 +)))
481 481  
482 -Inspect the metamodel of the SCGs in plugin de.cau.cs.kieler.scg. SCGs are used for analyses and optimization and include a lot of additional elements. However, for this tutorial it should be sufficient to look at the SCGraph class, its nodes attribute, the important node classes and the controlflow class. Important nodes for this SCG are entry, exit, assignment, conditional,
483 -{{/layout-cell}}
440 +(((
441 +(% class="syntaxhighlighter nogutter java" %)
442 +(((
443 +There's a few points to note here:
444 +)))
445 +)))
484 484  
485 -{{layout-cell}}
486 -[[image:attach:sccharts-scg.png]]
487 -{{/layout-cell}}
488 -{{/layout-section}}
447 +\\
489 489  
490 -{{layout-section ac:type="two_right_sidebar"}}
491 -{{layout-cell}}
492 -==== Transformation Creation Task 2 ====
449 +1.
450 +1*. Lines in Xtend code don't have to and with a semicolon.
451 +1*. We have been explicit about the method's return type, but we could have easily omitted it, letting Xtend infer the return type.
452 +1*. The keyword 
493 493  
494 -Write a transformation that transforms your normalized version of ABO's HandleA into its corresponding SCG.
454 +{{code language="none"}}
455 +val
456 +{{/code}} declares a constant, while 
495 495  
496 -* Proceed as before. Create a new plugin (or copy your last one) Make sure, you also add de.cau.cs.kieler.scg to your dependencies.
497 -* Write a transformation that is able to transform {{code language="none"}}ABO_norm_HandleA{{/code}} into its corresponding SCG.
498 -* **Verify your generated SCG**. If you added your transformation correctly, the SCG should be displayed automatically as soon as selected. If your SCG looks like the SCG depicted earlier, then everything is fine.
499 -* Check your SCG semantically. Is there anything you could improve/optimize? 
500 -*1. Write a second transformation (just as before) and add it to the transformation chain right after the transformation you already added.
501 -*1. Optimize the given SCG and compare the result with the previous one.
502 -*1. Make sure that the two SCGs are still semantically identical.
458 +{{code language="none"}}
459 +var
460 +{{/code}} declares a variable. Try to make do with constants where possible.
461 +1*. The methods you call should be declared as 
503 503  
504 -
463 +{{code language="none"}}
464 +def private
465 +{{/code}} since they are implementation details and shouldn't be called by other classes.
466 +1*. You may be tempted to add a few global variables that hold things like a global input variable or a pointer to the current state. While you could to that, 
505 505  
468 +{{code language="none"}}
469 +def create 
470 +{{/code}}methods might offer a better alternative...
471 +\\
472 +1. Replace the TODO with an transformation code that takes an extended BF program and transforms it into an semantically equivalent BF program that only uses standard BF instructions. 
473 +HINT: Some of the extended BF commands can only be expressed by standard operations if you can write to other cells. Therefore you are allowed to perform side effects on the tape.
474 +1. Open the //Plug-In Manifest Editor// and switch to the Runtime tab. Add the package containing your transformation to the list of exported packages. (You may have to check the //Show non-Java packages// option in the //Exported Packages// dialog to see the package.)
475 +\\
476 +)))
477 +1. **Verify your generated SCG**. If you added your transformation correctly, the SCG should be displayed automatically as soon as selected. If your SCG looks like the SCG depicted earlier, then everything is fine.
478 +1. Check your SCG semantically. Is there anything you could improve/optimize? 
479 +11. Write a second transformation (just as before) and add it to the transformation chain right after the transformation you already added.
480 +11. Optimize the given SCG and compare the result with the previous one.
481 +11. Make sure that the two SCGs are still semantically identical.
482 +
506 506  Congratulations! You finished the SCCharts Development Tutorial. Ask your supervisor for further instructions!
507 507  
508 508  
509 509  {{/layout-cell}}
510 -
511 -{{layout-cell}}
512 -
513 -{{/layout-cell}}
514 514  {{/layout-section}}
515 515  {{/layout}}
Confluence.Code.ConfluencePageClass[0]
Id
... ... @@ -1,1 +1,1 @@
1 -16810403
1 +16810318
URL
... ... @@ -1,1 +1,1 @@
1 -https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/TUT/pages/16810403/SCCharts Development
1 +https://rtsys.informatik.uni-kiel.de/confluence//wiki/spaces/TUT/pages/16810318/SCCharts Development